The control of Spo11's interaction with meiotic recombination hotspots

被引:72
作者
Prieler, S
Penkner, A
Borde, V
Klein, F [1 ]
机构
[1] Inst Bot, Max F Perutz Labs, Dept Chromosome Biol, A-1030 Vienna, Austria
[2] Inst Curie, CNRS, UMR 144, F-75248 Paris 05, France
关键词
spo11-Y135; cleavage complex; tight" binding; DSB repair; Spo11 cleavage model;
D O I
10.1101/gad.321105
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Pro-rammed double-strand breaks (DSBs), which initiate meiotic recombination, arise through the activity of the evolutionary conserved topoisomerase homolog Spo11. Spo11 is believed to catalyze the DNA cleavage reaction in the initial step of DSB formation, while at least a further 11 factors assist in Saccharomyces cerevisiae. Using chromatin-immunoprecipitation (ChIP), we detected the transient, noncovalent association of Spo11 with meiotic hotspots in wild-type cells. The establishment of this association requires Rec102, Rec104, and Rec114, while the timely removal of Spo11 from chromatin depends on several factors, including Mei4 and Ndt80. In addition, at least one further component, namely, Red1, is responsible for locally restricting Spo11's interaction to the core region of the hotspot. In chromosome spreads, we observed meiosis-specific Spo11-Myc foci, independent of DSB formation, from leptotene until pachytene. In both rad50S and com1Delta/sae2Delta mutants, we observed a novel reaction intermediate between Spo1 I and hotspots, which leads to the detection of full-length hotspot DNA by ChIP in the absence of artificial cross-linking. Although this DNA does not contain a break, its recovery requires Spo11's catalytic residue Y135. We propose that detection of uncross-linked full-length hotspot DNA is only possible during the reversible stage of the Spo11 cleavage reaction, in which rad50S and com1Delta/sae2Delta mutants transiently arrest.
引用
收藏
页码:255 / 269
页数:15
相关论文
共 64 条
[1]   ANALYSIS OF WILD-TYPE AND RAD50 MUTANTS OF YEAST SUGGESTS AN INTIMATE-RELATIONSHIP BETWEEN MEIOTIC CHROMOSOME SYNAPSIS AND RECOMBINATION [J].
ALANI, E ;
PADMORE, R ;
KLECKNER, N .
CELL, 1990, 61 (03) :419-436
[2]   Differential timing and control of noncrossover and crossover recombination during meiosis [J].
Allers, T ;
Lichten, M .
CELL, 2001, 106 (01) :47-57
[3]   Antiviral protein Ski8 is a direct partner of Spo11 in meiotic DNA break formation, independent of its cytoplasmic role in RNA metabolism [J].
Arora, C ;
Kee, K ;
Maleki, S ;
Keeney, S .
MOLECULAR CELL, 2004, 13 (04) :549-559
[4]   Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11 [J].
Baudat, F ;
Manova, K ;
Yuen, JP ;
Jasin, M ;
Keeney, S .
MOLECULAR CELL, 2000, 6 (05) :989-998
[5]   Clustering of meiotic double-strand breaks on yeast chromosome III [J].
Baudat, F ;
Nicolas, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (10) :5213-5218
[6]   An atypical topoisomerase II from archaea with implications for meiotic recombination [J].
Bergerat, A ;
deMassy, B ;
Gadelle, D ;
Varoutas, PC ;
Nicolas, A ;
Forterre, P .
NATURE, 1997, 386 (6623) :414-417
[7]   Physical and functional interactions among basic chromosome organizational features govern early steps of meiotic chiasma formation [J].
Blat, Y ;
Protacio, RU ;
Hunter, N ;
Kleckner, N .
CELL, 2002, 111 (06) :791-802
[8]   Direct coupling between meiotic DNA replication and recombination initiation [J].
Borde, V ;
Goldman, ASH ;
Lichten, M .
SCIENCE, 2000, 290 (5492) :806-809
[9]   Association of Mre11p with double-strand break sites during yeast meiosis [J].
Borde, V ;
Lin, W ;
Novikov, E ;
Petrini, JH ;
Lichten, M ;
Nicolas, A .
MOLECULAR CELL, 2004, 13 (03) :389-401
[10]   A PATHWAY FOR GENERATION AND PROCESSING OF DOUBLE-STRAND BREAKS DURING MEIOTIC RECOMBINATION IN SACCHAROMYCES-CEREVISIAE [J].
CAO, L ;
ALANI, E ;
KLECKNER, N .
CELL, 1990, 61 (06) :1089-1101