A posteriori error estimation techniques in practical finite element analysis

被引:303
作者
Grätsch, T [1 ]
Bathe, KJ [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
关键词
finite element analysis; a posteriori error estimation; goal-oriented error estimation; dual problem; practical procedures;
D O I
10.1016/j.compstruc.2004.08.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we review the basic concepts to obtain a posteriori error estimates for the finite element solution of an elliptic linear model problem. We give the basic ideas to establish global error estimates for the energy norm as well as goal-oriented error estimates. While we show how these error estimation techniques are employed for our simple model problem, the emphasis of the paper is on assessing whether these procedures are ready for use in practical linear finite element analysis. We conclude that the actually practical error estimation techniques do not provide mathematically proven bounds on the error and need to be used with care. The more accurate estimation procedures also do not provide proven bounds that, in general, can be computed efficiently. We also briefly comment upon the state of error estimations in nonlinear and transient analyses and when mixed methods are used. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:235 / 265
页数:31
相关论文
共 85 条
[1]  
ADJERID S, IN PRESS APPL NUMER
[2]  
Ainsworth M, 2000, PUR AP M-WI, DOI 10.1002/9781118032824
[3]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[4]   ANALYSIS OF OPTIMAL FINITE-ELEMENT MESHES IN R [J].
BABUSKA, I ;
RHEINBOLDT, WC .
MATHEMATICS OF COMPUTATION, 1979, 33 (146) :435-463
[5]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615
[6]   Guaranteed computable bounds for the exact error in the finite element solution Part I: One-dimensional model problem [J].
Babuska, I ;
Strouboulis, T ;
Gangaraj, SK .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 176 (1-4) :51-79
[7]   THE POST-PROCESSING APPROACH IN THE FINITE-ELEMENT METHOD .3. A POSTERIORI ERROR-ESTIMATES AND ADAPTIVE MESH SELECTION [J].
BABUSKA, I ;
MILLER, A .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1984, 20 (12) :2311-2324
[9]   A FEEDBACK FINITE-ELEMENT METHOD WITH A POSTERIORI ERROR ESTIMATION .1. THE FINITE-ELEMENT METHOD AND SOME BASIC PROPERTIES OF THE A POSTERIORI ERROR ESTIMATOR [J].
BABUSKA, I ;
MILLER, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1987, 61 (01) :1-40
[10]  
Babuska I., 2001, NUMER MATH SCI COMP