Antizyme targets cyclin D1 for degradation - A novel mechanism for cell growth repression

被引:122
作者
Newman, RM
Mobascher, A
Mangold, U
Koike, C
Diah, S
Schmidt, M
Finley, D
Zetter, BR
机构
[1] Childrens Hosp, Program Vasc Biol, Boston, MA 02115 USA
[2] Childrens Hosp, Dept Surg, Boston, MA 02115 USA
[3] Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA
关键词
D O I
10.1074/jbc.M407349200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Overproduction of the ornithine decarboxylase (ODC) regulatory protein ODC-antizyme has been shown to correlate with cell growth inhibition in a variety of different cell types. Although the exact mechanism of this growth inhibition is not known, it has been attributed to the effect of antizyme on polyamine metabolism. Antizyme binds directly to ODC, targeting ODC for ubiquitin-independent degradation by the 26 S proteasome. We now show that antizyme induction also leads to degradation of the cell cycle regulatory protein cyclin D1. We demonstrate that antizyme is capable of specific, noncovalent association with cyclin D1 and that this interaction accelerates cyclin D1 degradation in vitro in the presence of only antizyme, cyclin D1, purified 26 S proteasomes, and ATP. In vivo, antizyme up-regulation induced either by the polyamine spermine or by antizyme overexpression causes reduction of intracellular cyclin D1 levels. The antizyme-mediated pathway for cyclin D1 degradation is independent of the previously characterized phosphorylation- and ubiquitination-dependent pathway, because antizyme up-regulation induces the degradation of a cyclin D1 mutant (T286A) that abrogates its ubiquitination. We propose that antizyme-mediated degradation of cyclin D1 by the proteasome may provide an explanation for the repression of cell growth following antizyme up-regulation.
引用
收藏
页码:41504 / 41511
页数:8
相关论文
共 42 条
[1]  
ALLEN RD, 1987, AM J REPROD IMMUNOL, V13, P4
[2]   Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation [J].
Alt, JR ;
Cleveland, JL ;
Hannink, M ;
Diehl, JA .
GENES & DEVELOPMENT, 2000, 14 (24) :3102-3114
[3]   Coordinate changes of polyamine metabolism regulatory proteins during the cell cycle of normal human dermal fibroblasts [J].
Bettuzzi, S ;
Davalli, P ;
Astancolle, S ;
Pinna, C ;
Roncaglia, R ;
Boraldi, F ;
Tiozzo, R ;
Sharrard, M ;
Corti, A .
FEBS LETTERS, 1999, 446 (01) :18-22
[4]   The base of the proteasome regulatory particle exhibits chaperone-like activity [J].
Braun, BC ;
Glickman, M ;
Kraft, R ;
Dahlmann, B ;
Kloetzel, PM ;
Finley, D ;
Schmidt, M .
NATURE CELL BIOLOGY, 1999, 1 (04) :221-226
[5]   MECHANISMS OF SPERMINE TOXICITY IN BABY-HAMSTER KIDNEY (BHK) CELLS - THE ROLE OF AMINE OXIDASES AND OXIDATIVE STRESS [J].
BRUNTON, VG ;
GRANT, MH ;
WALLACE, HM .
BIOCHEMICAL JOURNAL, 1991, 280 :193-198
[6]   Regulation of cellular polyamines by antizyme [J].
Coffino, P .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2001, 2 (03) :188-194
[7]   Antizyme, a mediator of ubiquitin-independent proteasomal degradation [J].
Coffino, P .
BIOCHIMIE, 2001, 83 (3-4) :319-323
[8]   SCF and cullin/RING H2-based ubiquitin ligases [J].
Deshaies, RJ .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1999, 15 :435-467
[9]   Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquintin-proteasome pathway [J].
Diehl, JA ;
Zindy, F ;
Sherr, CJ .
GENES & DEVELOPMENT, 1997, 11 (08) :957-972
[10]   Glycogen synthase kinase 3β regulates cyclin D1 proteolysis and subcellular localization [J].
Diehl, JA ;
Cheng, MG ;
Roussel, MF ;
Sherr, CJ .
GENES & DEVELOPMENT, 1998, 12 (22) :3499-3511