The role of the medial frontal cortex in cognitive control

被引:2270
作者
Ridderinkhof, KR [1 ]
Ullsperger, M
Crone, EA
Nieuwenhuis, S
机构
[1] Univ Amsterdam, Dept Psychol, Roetersstr 15, NL-1018 WB Amsterdam, Netherlands
[2] Leiden Univ, Dept Psychol, NL-2333 AK Leiden, Netherlands
[3] Max Planck Inst Human Cognit & Brain Sci, D-04103 Leipzig, Germany
[4] Univ Calif Davis, Ctr Mind & Brain, Davis, CA 95616 USA
[5] Free Univ Amsterdam, Dept Cognit Psychol, NL-1081 BT Amsterdam, Netherlands
关键词
dsfsdf;
D O I
10.1126/science.1100301
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Adaptive goal-directed behavior involves monitoring of ongoing actions and performance outcomes, and subsequent adjustments of behavior and learning. We evaluate new findings in cognitive neuroscience concerning cortical interactions that subserve the recruitment and implementation of such cognitive control. A review of primate and human studies, along with a meta-analysis of the human functional neuroimaging literature, suggest that the detection of unfavorable outcomes, response errors, response conflict, and decision uncertainty elicits largely overlapping clusters of activation foci in an extensive part of the posterior medial. frontal cortex (pMFC). A direct link is delineated between activity in this area and subsequent adjustments in performance. Emerging evidence points to functional interactions between the pMFC and the lateral prefrontal cortex (LPFC), so that monitoring-related pMFC activity serves as a signal that engages regulatory processes in the LPFC to implement performance adjustments.
引用
收藏
页码:443 / 447
页数:5
相关论文
共 42 条
[1]   Inhibition and the right inferior frontal cortex [J].
Aron, AR ;
Robbins, TW ;
Poldrack, RA .
TRENDS IN COGNITIVE SCIENCES, 2004, 8 (04) :170-177
[2]   Selection, integration, and conflict monitoring: Assessing the nature and generality of prefrontal cognitive control mechanisms [J].
Badre, D ;
Wagner, AD .
NEURON, 2004, 41 (03) :473-487
[3]   PREFRONTAL CONNECTIONS OF MEDIAL MOTOR AREAS IN THE RHESUS-MONKEY [J].
BATES, JF ;
GOLDMANRAKIC, PS .
JOURNAL OF COMPARATIVE NEUROLOGY, 1993, 336 (02) :211-228
[4]   Conflict monitoring and cognitive control [J].
Botvinick, MM ;
Braver, TS ;
Barch, DM ;
Carter, CS ;
Cohen, JD .
PSYCHOLOGICAL REVIEW, 2001, 108 (03) :624-652
[5]   Decomposing components of task preparation with functional magnetic resonance imaging [J].
Brass, M ;
von Cramon, DY .
JOURNAL OF COGNITIVE NEUROSCIENCE, 2004, 16 (04) :609-620
[6]   Prefrontal regions involved in keeping information in and out of mind [J].
Bunge, SA ;
Ochsner, KN ;
Desmond, JE ;
Glover, GH ;
Gabrieli, JDE .
BRAIN, 2001, 124 :2074-2086
[7]   Dorsal anterior cingulate cortex: A role in reward-based decision making [J].
Bush, G ;
Vogt, BA ;
Holmes, J ;
Dale, AM ;
Greve, D ;
Jenike, MA ;
Rosen, BR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (01) :523-528
[8]   Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging [J].
Cools, R ;
Clark, L ;
Owen, AM ;
Robbins, TW .
JOURNAL OF NEUROSCIENCE, 2002, 22 (11) :4563-4567
[9]   Human cingulate cortex and autonomic control: converging neuroimaging and clinical evidence [J].
Critchley, HD ;
Mathias, CJ ;
Josephs, O ;
O'Doherty, J ;
Zanini, S ;
Dewar, BK ;
Cipolotti, L ;
Shallice, T ;
Dolan, RJ .
BRAIN, 2003, 126 :2139-2152
[10]   ERP components on reaction errors and their functional significance: a tutorial [J].
Falkenstein, M ;
Hoormann, J ;
Christ, S ;
Hohnsbein, J .
BIOLOGICAL PSYCHOLOGY, 2000, 51 (2-3) :87-107