Feature subset selection using a genetic algorithm

被引:710
作者
Yang, JH [1 ]
Honavar, V
机构
[1] Iowa State Univ, Dept Comp Sci, AI Res Grp, Ames, IA 50011 USA
[2] Iowa State Univ, Artificial Intelligence Res Lab, Ames, IA 50011 USA
来源
IEEE INTELLIGENT SYSTEMS & THEIR APPLICATIONS | 1998年 / 13卷 / 02期
基金
美国国家科学基金会;
关键词
D O I
10.1109/5254.671091
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Practical pattern-classification and knowledge-discovery problems require the selection of a subset of attributes or features to represent the patterns to be classified. The authors' approach uses a genetic algorithm to select such subsets, achieving multicriteria optimization in terms of generalization accuracy and costs associated with the features.
引用
收藏
页码:44 / 49
页数:6
相关论文
共 15 条
[1]   FAST GENETIC SELECTION OF FEATURES FOR NEURAL NETWORK CLASSIFIERS [J].
BRILL, FZ ;
BROWN, DE ;
MARTIN, WN .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1992, 3 (02) :324-328
[2]   A WEIGHTED NEAREST NEIGHBOR ALGORITHM FOR LEARNING WITH SYMBOLIC FEATURES [J].
COST, S ;
SALZBERG, S .
MACHINE LEARNING, 1993, 10 (01) :57-78
[3]   GENERATIVE LEARNING STRUCTURES AND PROCESSES FOR GENERALIZED CONNECTIONIST NETWORKS [J].
HONAVAR, V ;
UHR, L .
INFORMATION SCIENCES, 1993, 70 (1-2) :75-108
[4]  
Huan Liu, 1996, Machine Learning. Proceedings of the Thirteenth International Conference (ICML '96), P319
[5]  
John GH., 1994, Machine Learning: Proceedings of the Eleventh International Conference, V1994, P121
[6]  
KEENEY R. L., 1976, Decision with Multiple Objectives: Preferences and value tradeoffs
[7]  
Mitchell Melanie, 1998, INTRO GENETIC ALGORI
[8]  
PAREKH R, 1997, 9706 ISU CS TR
[9]  
Richeldi M., 1996, KDD-96 Proceedings. Second International Conference on Knowledge Discovery and Data Mining, P379
[10]  
Ripley BD., 1996, Pattern Recognition and Neural Networks, DOI 10.1017/CBO9780511812651