Traffic-independent function of the Sar1p/COPII machinery in proteasomal sorting of the cystic fibrosis transmembrane conductance regulator

被引:54
作者
Fu, LW [1 ]
Sztul, E [1 ]
机构
[1] Univ Alabama, Dept Cell Biol, Birmingham, AL 35294 USA
关键词
ER sorting; proteasomal degradation; CFTR; ERAD; yeast;
D O I
10.1083/jcb.200210086
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Newly synthesized proteins that do not fold correctly in the ER are targeted for ER-associated protein degradation (ERAD) through distinct sorting mechanisms; soluble ERAD substrates require ER-Golgi transport and retrieval for degradation, whereas transmembrane ERAD substrates are retained in the ER. Retained transmembrane proteins are often sequestered into specialized ER subdomains, but the relevance of such sequestration to proteasomal degradation has not been explored. We used the yeast Saccharomyces cerevisiae and a model ERAD substrate, the cystic fibrosis transmembrane conductance regulator (CFTR), to explore whether CFTR is sequestered before degradation, to identify the molecular machinery regulating sequestration, and to analyze the relationship between sequestration and degradation. We report that CFTR is sequestered into ER subdomains containing the chaperone Kar2p, and that sequestration and CFTR degradation are disrupted in sec12(ts) strain (mutant in guanine-nucleotide exchange factor for Sar1p), sec13(ts) strain (mutant in the Sec13p component of COPII), and sec23(ts) strain (mutant in the Sec23p component of COPII) grown at restrictive temperature. The function of the Sar1p/COPII machinery in CFTR sequestration and degradation is independent of its role in ER-Golgi traffic. We propose that Sar1p/COPII-mediated sorting of CFTR into ER subdomains is essential for its entry into the proteasomal degradation pathway. These findings reveal a new aspect of the degradative mechanism, and suggest functional crosstalk between the secretory and the degradative pathways.
引用
收藏
页码:157 / 163
页数:7
相关论文
共 46 条
[1]   ER export: public transportation by the COPII coach [J].
Antonny, B ;
Schekman, R .
CURRENT OPINION IN CELL BIOLOGY, 2001, 13 (04) :438-443
[2]   Traffic pattern of cystic fibrosis transmembrane regulator through the early exocytic pathway [J].
Bannykh, SI ;
Bannykh, GI ;
Fish, KN ;
Moyer, BD ;
Riordan, JR ;
Balch, WE .
TRAFFIC, 2000, 1 (11) :852-870
[3]   Traffic COPs of the early secretory pathway [J].
Barlowe, C .
TRAFFIC, 2000, 1 (05) :371-377
[4]   SEC12 ENCODES A GUANINE-NUCLEOTIDE-EXCHANGE FACTOR ESSENTIAL FOR TRANSPORT VESICLE BUDDING FROM THE ER [J].
BARLOWE, C ;
SCHEKMAN, R .
NATURE, 1993, 365 (6444) :347-349
[5]   The mechanism underlying cystic fibrosis transmembrane conductance regulator transport from the endoplasmic reticulum to the proteasome includes Sec61β and a cytosolic, deglycosylated intermediary [J].
Bebök, Z ;
Mazzochi, C ;
King, SA ;
Hong, JS ;
Sorscher, EJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (45) :29873-29878
[6]   A RING-H2 finger motif is essential for the function of Der3/Hrd1 in endoplasmic reticulum associated protein degradation in the yeast Saccharomyces cerevisiae [J].
Bordallo, J ;
Wolf, DH .
FEBS LETTERS, 1999, 448 (2-3) :244-248
[7]   The requirement for molecular chaperones during endoplasmic reticulum-associated protein degradation demonstrates that protein export and import are mechanistically distinct [J].
Brodsky, JL ;
Werner, ED ;
Dubas, ME ;
Goeckeler, JL ;
Kruse, KB ;
McCracken, AA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (06) :3453-3460
[8]   ER protein quality control and proteasome-mediated protein degradation [J].
Brodsky, JL ;
McCracken, AA .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 1999, 10 (05) :507-513
[9]   Degradation of endoplasmic reticulum (ER) quality control substrates requires transport between the ER and Golgi [J].
Caldwell, SR ;
Hill, KJ ;
Cooper, AA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (26) :23296-23303
[10]   ER quality control: towards an understanding at the molecular level [J].
Ellgaard, L ;
Helenius, A .
CURRENT OPINION IN CELL BIOLOGY, 2001, 13 (04) :431-437