Retrieval of subpixel snow-covered area and grain size from imaging spectrometer data

被引:284
作者
Painter, TH
Dozier, J [1 ]
Roberts, DA
Davis, RE
Green, RO
机构
[1] Univ Calif Santa Barbara, Donald Bren Sch Environm Sci & Management, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Geog, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Inst Computat Earth Syst Sci, Santa Barbara, CA 93106 USA
[4] USA, Cold Reg Res & Engn Lab, Hanover, NH 03755 USA
[5] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
基金
美国国家航空航天局;
关键词
snow; albedo; mapping; imaging spectrometry; AVIRIS;
D O I
10.1016/S0034-4257(02)00187-6
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We describe and validate an automated model that retrieves subpixel snow-covered area and effective grain size from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data. The model analyzes multiple endmember spectral mixtures with a spectral library of snow, vegetation, rock, and soil. We derive snow spectral endmembers of varying grain size from a radiative transfer model; spectra for vegetation, rock, and soil were collected in the field and laboratory. For three AVIRIS images of Mammoth Mountain, California that span common snow conditions for winter through spring, we validate the estimates of snow-covered area with fine-resolution aerial photographs and validate the estimates of grain size with stereological analysis of snow samples collected within 2 It of the AVIRIS overpasses. The RMS error for snow-covered area retrieved from AVIRIS for the combined set of three images was 4%. The RMS error for snow grain size retrieved from a 3x3 window of AVIRIS data for the combined set of three images is 48 mum, and the RMS error for reflectance integrated over the solar spectrum and over all hemispherical reflectance angles is 0.018. (C) 2003 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:64 / 77
页数:14
相关论文
共 56 条
[1]  
Adams J.B., 1993, Remote Geochemical Analysis: Elemental and Mineralogical Composition, P145
[2]   MODTRAN cloud and multiple scattering upgrades with application to AVIRIS [J].
Berk, A ;
Bernstein, LS ;
Anderson, GP ;
Acharya, PK ;
Robertson, DC ;
Chetwynd, JH ;
Adler-Golden, SM .
REMOTE SENSING OF ENVIRONMENT, 1998, 65 (03) :367-375
[3]  
BOURDELLES B, 1993, ANNALS OF GLACIOLOGY, VOL 17, P86
[4]   Estimating the spatial distribution of snow in mountain basins using remote sensing and energy balance modeling [J].
Cline, DW ;
Bales, RC ;
Dozier, J .
WATER RESOURCES RESEARCH, 1998, 34 (05) :1275-1285
[5]  
Colee M T, 2000, P W SNOW C, V68, P99
[6]  
DAVIS RE, 1987, NATO ASI SER C-MATH, V211, P53
[7]   EFFECT OF GRAIN-SIZE AND SNOWPACK WATER EQUIVALENCE ON VISIBLE AND NEAR-INFRARED SATELLITE-OBSERVATIONS OF SNOW [J].
DOZIER, J ;
SCHNEIDER, SR ;
MCGINNIS, DF .
WATER RESOURCES RESEARCH, 1981, 17 (04) :1213-1221
[8]   SPECTRAL SIGNATURE OF ALPINE SNOW COVER FROM THE LANDSAT THEMATIC MAPPER [J].
DOZIER, J .
REMOTE SENSING OF ENVIRONMENT, 1989, 28 :9-&
[9]  
Dozier J., 1987, ANN GLACIOL, V9, P97, DOI DOI 10.1017/S026030550000046X
[10]   Comparison of in situ and Landsat thematic mapper derived snow grain characteristics in the Alps [J].
Fily, M ;
Bourdelles, B ;
Dedieu, JP ;
Sergent, C .
REMOTE SENSING OF ENVIRONMENT, 1997, 59 (03) :452-460