Molecular mechanisms controlling actin filament dynamics in nonmuscle cells

被引:1151
作者
Pollard, TD
Blanchoin, L
Mullins, RD
机构
[1] Salk Inst Biol Studies, Struct Biol Lab, La Jolla, CA 92037 USA
[2] Univ Calif San Francisco, Dept Mol & Cellular Pharmacol, San Francisco, CA 94143 USA
来源
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE | 2000年 / 29卷
关键词
cell motility; WASp; Arp2/3; complex; ADF/cofilins; profilin;
D O I
10.1146/annurev.biophys.29.1.545
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We review how motile cells regulate actin filament assembly at their leading edge. Activation of cell surface receptors generates signals (including activated Rho family GTPases) that converge on integrating proteins of the WASp family (WASp, N-WASP, and Scar/WAVE). WASP family proteins stimulate Arp2/3 complex to nucleate actin filaments, which grow at a fixed 70 degrees angle from the side of pre-existing actin filaments. These filaments push the membrane forward as they grow at their barbed ends. Arp2/3 complex is incorporated into the network, and new filaments are capped rapidly, so that activated Arp2/3 complex must be supplied continuously to keep the network growing. Hydrolysis of ATP bound to polymerized actin followed by phosphate dissociation marks older filaments for depolymerization by ADF/cofilins. Profilin catalyzes exchange of ADP for ATP, recycling actin back to a pool of unpolymerized monomers bound to profilin and thymosin-beta 4 that is poised for rapid elongation of new barbed ends.
引用
收藏
页码:545 / 576
页数:32
相关论文
共 154 条
[1]   Structure of Cdc42 in complex with the GTPase-binding domain of the 'Wiskott-Aldrich syndrome' protein [J].
Abdul-Manan, N ;
Aghazadeh, B ;
Liu, GA ;
Majumdar, A ;
Ouerfelli, O ;
Siminovitch, KA ;
Rosen, MK .
NATURE, 1999, 399 (6734) :379-383
[2]   The actin-based nanomachine at the leading edge of migrating cells [J].
Abraham, VC ;
Krishnamurthi, V ;
Taylor, DL ;
Lanni, F .
BIOPHYSICAL JOURNAL, 1999, 77 (03) :1721-1732
[3]   REACTIVATION OF PHOSPHORYLATED ACTIN DEPOLYMERIZING FACTOR AND IDENTIFICATION OF THE REGULATORY SITE [J].
AGNEW, BJ ;
MINAMIDE, LS ;
BAMBURG, JR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (29) :17582-17587
[4]   A role for Cdc42 in macrophage chemotaxis [J].
Allen, WE ;
Zicha, D ;
Ridley, AJ ;
Jones, GE .
JOURNAL OF CELL BIOLOGY, 1998, 141 (05) :1147-1157
[5]   DISRUPTION OF THE ACTIN CYTOSKELETON IN YEAST CAPPING PROTEIN MUTANTS [J].
AMATRUDA, JF ;
CANNON, JF ;
TATCHELL, K ;
HUG, C ;
COOPER, JA .
NATURE, 1990, 344 (6264) :352-354
[6]   Gelsolin is a downstream effector of rac for fibroblast motility [J].
Azuma, T ;
Witke, W ;
Stossel, TT ;
Hartwig, JH ;
Kwiatkowski, DJ .
EMBO JOURNAL, 1998, 17 (05) :1362-1370
[7]   Relationship between Arp2/3 complex and the barbed ends of actin filaments at the leading edge of carcinoma cells after epidermal growth factor stimulation [J].
Bailly, M ;
Macaluso, F ;
Cammer, M ;
Chan, A ;
Segall, JE ;
Condeelis, JS .
JOURNAL OF CELL BIOLOGY, 1999, 145 (02) :331-345
[8]   PARTIAL-PURIFICATION AND CHARACTERIZATION OF AN ACTIN DEPOLYMERIZING FACTOR FROM BRAIN [J].
BAMBURG, JR ;
HARRIS, HE ;
WEEDS, AG .
FEBS LETTERS, 1980, 121 (01) :178-182
[9]   Putting a new twist on actin: ADF/cofilins modulate actin dynamics [J].
Bamburg, JR ;
McGough, A ;
Ono, S .
TRENDS IN CELL BIOLOGY, 1999, 9 (09) :364-370
[10]   THE ROLE OF ACTIN FILAMENT BARBED-END EXPOSURE IN CYTOSKELETAL DYNAMICS AND CELL MOTILITY [J].
BARKALOW, K ;
HARTWIG, JH .
BIOCHEMICAL SOCIETY TRANSACTIONS, 1995, 23 (03) :451-456