Well-posedness of the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein's field equations

被引:63
作者
Beyer, H
Sarbach, O
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Ctr Computat & Technol, Baton Rouge, LA 70803 USA
[3] MPI Gravitat Phys, D-14476 Golm, Germany
[4] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[5] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
来源
PHYSICAL REVIEW D | 2004年 / 70卷 / 10期
关键词
D O I
10.1103/PhysRevD.70.104004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We give a well posed initial value formulation of the Baumgarte-Shapiro-Shibata-Nakamura form of Einstein's equations with gauge conditions given by a Bona-Masso-like slicing condition for the lapse and a frozen shift. This is achieved by introducing extra variables and recasting the evolution equations into a first order symmetric hyperbolic system. We also consider the presence of artificial boundaries and derive a set of boundary conditions that guarantee that the resulting initial-boundary value problem is well posed, though not necessarily compatible with the constraints. In the case of dynamical gauge conditions for the lapse and shift we obtain a class of evolution equations which are strongly hyperbolic and so yield well posed initial value formulations.
引用
收藏
页码:104004 / 1
页数:11
相关论文
共 57 条
[1]   Gravitational wave extraction and outer boundary conditions by perturbative matching [J].
Abrahams, AM ;
Rezzolla, L ;
Rupright, ME ;
Anderson, A ;
Anninos, P ;
Baumgarte, TW ;
Bishop, NT ;
Brandt, SR ;
Browne, JC ;
Camarda, K ;
Choptuik, MW ;
Cook, GB ;
Correll, RR ;
Evans, CR ;
Finn, LS ;
Fox, GC ;
Gomez, R ;
Haupt, T ;
Huq, MF ;
Kidder, LE ;
Klasky, SA ;
Laguna, P ;
Landry, W ;
Lehner, L ;
Lenaghan, J ;
Marsa, RL ;
Masso, J ;
Matzner, RA ;
Mitra, S ;
Papadopoulos, P ;
Parashar, M ;
Saied, F ;
Saylor, PE ;
Scheel, MA ;
Seidel, E ;
Shapiro, SL ;
Shoemaker, D ;
Smarr, L ;
Szilagyi, B ;
Teukolsky, SA ;
van Putten, MHPM ;
Walker, P ;
Winicour, J ;
York, JW .
PHYSICAL REVIEW LETTERS, 1998, 80 (09) :1812-1815
[2]   Gauge conditions for long-term numerical black hole evolutions without excision -: art. no. 084023 [J].
Alcubierre, M ;
Brügmann, B ;
Diener, P ;
Koppitz, M ;
Pollney, D ;
Seidel, E ;
Takahashi, R .
PHYSICAL REVIEW D, 2003, 67 (08)
[3]   Hyperbolicity of the Kidder-Scheel-Teukolsky formulation of Einstein's equations coupled to a modified Bona-Masso slicing condition -: art. no. 104021 [J].
Alcubierre, M ;
Corichi, A ;
González, JA ;
Núñez, D ;
Salgado, M .
PHYSICAL REVIEW D, 2003, 67 (10)
[4]   A hyperbolic slicing condition adapted to Killing fields and densitized lapses [J].
Alcubierre, M ;
Corichi, A ;
González, JA ;
Núñez, D ;
Salgado, M .
CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (18) :3951-3968
[5]   Towards an understanding of the stability properties of the 3+1 evolution equations in general relativity -: art. no. 124011 [J].
Alcubierre, M ;
Allen, G ;
Brügmann, B ;
Seidel, E ;
Suen, WM .
PHYSICAL REVIEW D, 2000, 62 (12) :1-15
[6]   Numerical relativity and compact binaries [J].
Baumgarte, TW ;
Shapiro, SL .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2003, 376 (02) :41-131
[7]   Numerical integration of Einstein's field equations [J].
Baumgarte, TW ;
Shapiro, SL .
PHYSICAL REVIEW D, 1999, 59 (02)
[8]   ADAPTIVE MESH REFINEMENT FOR HYPERBOLIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
BERGER, MJ ;
OLIGER, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 53 (03) :484-512
[9]  
BEYER H, UNPUB OUTGOING BOUND
[10]   Dynamical shift conditions for the Z4 and BSSN formalisms [J].
Bona, C ;
Palenzuela, C .
PHYSICAL REVIEW D, 2004, 69 (10)