Functional characterization of Ape1 variants identified in the human population

被引:203
作者
Hadi, MZ [1 ]
Coleman, MA [1 ]
Fidelis, K [1 ]
Mohrenweiser, HW [1 ]
Wilson, DM [1 ]
机构
[1] Univ Calif Lawrence Livermore Natl Lab, Mol & Struct Biol Div, Livermore, CA 94551 USA
关键词
D O I
10.1093/nar/28.20.3871
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Apurinic/apyrimidinic (AP) sites are common mutagenic and cytotoxic DNA lesions. Ape1 is the major human repair enzyme for abasic sites and incises the phosphodiester backbone 5' to the lesion to initiate a cascade of events aimed at removing the AP moiety and maintaining genetic integrity. Through resequencing of genomic DNA from 128 unrelated individuals, and searching published reports and sequence databases, seven amino acid substitution variants were identified in the repair domain of human Ape1. Functional characterization revealed that three of the variants, L104R, E126D and R237A, exhibited similar to 40-60% reductions in specific incision activity. A fourth variant, D283G, is similar to the previously characterized mutant D283A found to exhibit similar to 10% repair capacity. The most common substitution (D148E; observed at an allele frequency of 0.38) had no impact on endonuclease and DNA binding activities, nor did a G306A substitution. A G241R variant showed slightly enhanced endonuclease activity relative to wild-type. In total, four of seven substitutions in the repair domain of Ape1 imparted reduced function. These reduced function variants may represent low penetrance human polymorphisms that associate with increased disease susceptibility.
引用
收藏
页码:3871 / 3879
页数:9
相关论文
共 69 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]  
Ausubel F M, 1999, SHORT PROTOCOLS MOL
[3]   IDENTIFICATION OF CRITICAL ACTIVE-SITE RESIDUES IN THE MULTIFUNCTIONAL HUMAN DNA-REPAIR ENZYME HAP1 [J].
BARZILAY, G ;
MOL, CD ;
ROBSON, CN ;
WALKER, LJ ;
CUNNINGHAM, RP ;
TAINER, JA ;
HICKSON, ID .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (07) :561-568
[4]   Interaction of human apurinic endonuclease and DNA polymerase beta in the base excision repair pathway [J].
Bennett, RAO ;
Wilson, DM ;
Wong, D ;
Demple, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (14) :7166-7169
[5]  
Cheng L, 1998, CANCER EPIDEM BIOMAR, V7, P465
[6]   DEFECTIVE REPAIR REPLICATION OF DNA IN XERODERMA PIGMENTOSUM [J].
CLEAVER, JE .
NATURE, 1968, 218 (5142) :652-&
[7]   Inherited susceptibility to bleomycin-induced chromatid breaks in cultured peripheral blood lymphocytes [J].
Cloos, J ;
Nieuwenhuis, EJC ;
Boomsma, DI ;
Kuik, DJ ;
van der Sterre, MLT ;
Arwert, F ;
Snow, GB ;
Braakhuis, BJM .
JOURNAL OF THE NATIONAL CANCER INSTITUTE, 1999, 91 (13) :1125-1130
[8]   Variations on a theme: Cataloging human DNA sequence variation [J].
Collins, FS ;
Guyer, MS ;
Chakravarti, A .
SCIENCE, 1997, 278 (5343) :1580-1581
[9]   Chemistry of glycosylases and endonucleases involved in base-excision repair [J].
David, SS ;
Wiliams, SD .
CHEMICAL REVIEWS, 1998, 98 (03) :1221-1261
[10]  
DEMPLE B, 1994, ANNU REV BIOCHEM, V63, P915, DOI 10.1146/annurev.biochem.63.1.915