Twin support vector machines for pattern classification

被引:1085
作者
Jayadeva
Khemchandani, R.
Chandra, Suresh
机构
[1] Indian Inst Technol, Dept Elect Engn, New Delhi 110016, India
[2] Indian Inst Technol, Dept Math, New Delhi 110016, India
关键词
support vector machines; pattern classification; machine learning; generalized eigenvalues; eigenvalues; eigenvectors;
D O I
10.1109/TPAMI.2007.1068
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose Twin SVM, a binary SVM classifier that determines two nonparallel planes by solving two related SVM-type problems, each of which is smaller than in a conventional SVM. The Twin SVM formulation is in the spirit of proximal SVMs via generalized eigenvalues. On several benchmark data sets, Twin SVM is not only fast, but shows good generalization. Twin SVM is also useful for automatically discovering two-dimensional projections of the data.
引用
收藏
页码:905 / 910
页数:6
相关论文
共 17 条
[1]  
[Anonymous], P KDD 2001 KNOWL DIS
[2]  
[Anonymous], [No title captured], DOI DOI 10.1023/A:1009715923555
[3]  
[Anonymous], 1998, (ICML-1998) Proceedings of the 15th International Confer- ence on Machine Learning
[4]  
Blake C.L., 1998, UCI repository of machine learning databases
[5]   Massive data discrimination via linear support vector machines [J].
Bradley, PS ;
Mangasarian, OL .
OPTIMIZATION METHODS & SOFTWARE, 2000, 13 (01) :1-10
[6]  
Cherkassky V.S., 1998, LEARNING DATA CONCEP, V1st ed.
[7]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[8]  
Duda R.O., 2001, Pattern Classification, V2nd
[9]  
Golub GH., 2013, Matrix Computations, DOI 10.56021/9781421407944
[10]  
Gunn S. R., 1998, ISIS technical report, V14, P5, DOI DOI 10.1039/B918972F