Hopf (bi-)modules and crossed modules in braided monoidal categories

被引:40
作者
Bespalov, Y
Drabant, B
机构
[1] Katholieke Univ Leuven, Dept Math, B-3001 Louvain, Belgium
[2] Natl Acad Sci Ukraine, Bogolyubov Inst Theoret Phys, UA-252143 Kiev, Ukraine
关键词
D O I
10.1016/S0022-4049(96)00105-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Hopf (bi-)modules and crossed modules over a bialgebra B in a braided monoidal category C are considered. The (braided) monoidal equivalence of both categories is proved provided B is a Hopf algebra (with invertible antipode). Bialgebra projections and Hopf bimodule bialgebras over a Hopf algebra in C are found to be isomorphic categories. A generalization of the Majid-Radford criterion for a braided Hopf algebra to be a cross product is obtained as an application of these results. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:105 / 129
页数:25
相关论文
共 22 条
[1]  
BESPALOV YN, 1993, UNPUB ITP9357E
[2]  
BESPALOV YN, 1996, J THEOR MATH PHYSICS, V103, P368
[3]  
BESPALOV YN, 1996, J NONLINEAR MATH PHY, V4
[4]  
DRABANT B, 1994, IN PRESS ACTA APPL M
[5]   BRAIDED COMPACT CLOSED CATEGORIES WITH APPLICATIONS TO LOW DIMENSIONAL TOPOLOGY [J].
FREYD, PJ ;
YETTER, DN .
ADVANCES IN MATHEMATICS, 1989, 77 (02) :156-182
[6]  
JOYAL A, 1986, 86008 MACQ U
[7]   TANGLES AND HOPF-ALGEBRAS IN BRAIDED CATEGORIES [J].
LYUBASHENKO, V .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1995, 98 (03) :245-278
[8]   MODULAR TRANSFORMATIONS FOR TENSOR CATEGORIES [J].
LYUBASHENKO, V .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1995, 98 (03) :279-327
[9]  
Mac Lane Saunders, 1963, Rice University Studies, Papers in Mathematics, V49, P28
[10]  
MAJID S, 1994, LECT NOTES PURE APPL, V158, P55