Nitric-oxide dioxygenase activity and function of flavohemoglobins - Sensitivity to nitric oxide and carbon monoxide inhibition

被引:127
作者
Gardner, PR [1 ]
Gardner, AM
Martin, LA
Dou, Y
Li, TS
Olson, JS
Zhu, H
Riggs, AF
机构
[1] Childrens Hosp, Med Ctr, Div Crit Care Med, Cincinnati, OH 45229 USA
[2] Rice Univ, Dept Biochem & Cell Biol, Houston, TX 77005 USA
[3] Rice Univ, WM Keck Ctr Computat Biol, Houston, TX 77005 USA
[4] Univ Texas, Sch Biol Sci, Neurobiol Sect, Austin, TX 78712 USA
关键词
D O I
10.1074/jbc.M004141200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Widely distributed flavohemoglobins (flavoHbs) function as NO dioxygenases and confer upon cells a resistance to NO toxicity. FlavoHbs from Saccharomyces cerevisiae, Alcaligenes eutrophus, and Escherichia coli share similar spectra, O-2, NO, and CO binding kinetics, and steady-state NO dioxygenation kinetics. Turnover numbers (V-max) for S. cerevisiae, A. eutrophus, and E. coli flavoHbs are 112, 290, and 365 NO heme(-1) s(-1), respectively, at 37 degrees C with 200 mu M O-2. The K-M values for NO are low and range from 0.1 to 0.25 mu M. V-max/K-M(NO) ratios of 900-2900 mu M-1 s(-1) indicate an extremely efficient dioxygenation mechanism. Approximate K-M values for O-2 range from 60 to 90 mu M. NO inhibits the dioxygenases at NO:O-2 ratios of greater than or equal to 1:100 and makes true K-M(O-2) values difficult to determine, High and roughly equal second order rate constants for O-2 and NO association with the reduced flavoHbs (17-50 mu M-1 s(-1)) and small NO dissociation rate constants suggest that NO inhibits the dioxygenase reaction by forming inactive flavoHbNO complexes. Carbon monoxide also binds reduced flavoHbs with high affinity and competitively inhibits NO dioxygenases with respect to O-2 (K-I(CO) = similar to 1 mu M). These results suggest that flavoHbs and related hemoglobins evolved as NO detoxifying components of nitrogen metabolism capable of discriminating O-2 from inhibitory NO and CO.
引用
收藏
页码:31581 / 31587
页数:7
相关论文
共 62 条
[1]  
[Anonymous], [No title captured]
[2]  
Appleby C A, 1978, Methods Enzymol, V52, P157
[3]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[4]   OXIDATION OF CITRATE ISOCITRATE + CIS-ACONITATE BY ISOLATED MITOCHONDRIA [J].
CHAPPELL, JB .
BIOCHEMICAL JOURNAL, 1964, 90 (02) :225-&
[5]   A cooperative oxygen-binding hemoglobin from Mycobacterium tuberculosis [J].
Couture, M ;
Yeh, SR ;
Wittenberg, BA ;
Wittenberg, JB ;
Ouellet, Y ;
Rousseau, DL ;
Guertin, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (20) :11223-11228
[6]   Two isofunctional nitric oxide reductases in Alcaligenes eutrophus H16 [J].
Cramm, R ;
Siddiqui, RA ;
Friedrich, B .
JOURNAL OF BACTERIOLOGY, 1997, 179 (21) :6769-6777
[7]  
CRAMM R, 1994, J BIOL CHEM, V269, P7349
[8]   Role for the Salmonella flavohemoglobin in protection from nitric oxide [J].
Crawford, MJ ;
Goldberg, DE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (20) :12543-12547
[9]   Regulation of the Salmonella typhimurium flavohemoglobin gene -: A new pathway for bacterial gene expression in response to nitric oxide [J].
Crawford, MJ ;
Goldberg, DE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (51) :34028-34032
[10]   REGULATION OF SACCHAROMYCES-CEREVISIAE FLAVOHEMOGLOBIN GENE-EXPRESSION [J].
CRAWFORD, MJ ;
SHERMAN, DR ;
GOLDBERG, DE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (12) :6991-6996