Nonlinear dynamics - Synchronization from chaos

被引:23
作者
Ashwin, P [1 ]
机构
[1] Univ Exeter, Sch Math Sci, Exeter EX4 4QE, Devon, England
关键词
D O I
10.1038/422384a
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
It isn't easy to create a semblance of order in interconnected dynamical systems. But a mathematical tool could be the means to synchronize systems more effectively — and keep chaos at bay.
引用
收藏
页码:384 / 385
页数:2
相关论文
共 4 条
[1]   CONTROLLING CHAOS [J].
OTT, E ;
GREBOGI, C ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1990, 64 (11) :1196-1199
[2]  
Pikovsky A., 2003, SYNCHRONIZATION UNIV, V12
[3]   CONTINUOUS CONTROL OF CHAOS BY SELF-CONTROLLING FEEDBACK [J].
PYRAGAS, K .
PHYSICS LETTERS A, 1992, 170 (06) :421-428
[4]   Tailoring wavelets for chaos control [J].
Wei, GW ;
Zhan, M ;
Lai, CH .
PHYSICAL REVIEW LETTERS, 2002, 89 (28)