Staggered development of GABAergic and glycinergic transmission in the MNTB

被引:104
作者
Awatramani, GB
Turecek, R
Trussell, LO
机构
[1] Oregon Hlth Sci Univ, Vollum Inst, Oregon Hearing Res Ctr, Portland, OR 97239 USA
[2] Acad Sci Czech Republ, Inst Expt Med, Prague 14220 4, Czech Republic
关键词
D O I
10.1152/jn.00798.2004
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Maturation of some brain stem and spinal inhibitory systems is characterized by a shift from GABAergic to glycinergic transmission. Little is known about how this transition is expressed in terms of individual axonal inputs and synaptic sites. We have explored this issue in the rat medial nucleus of the trapezoid body (MNTB). Synaptic responses at postnatal days 5 - 7 (P5 - P7) were small, slow, and primarily mediated by GABA(A) receptors. By P8 - P12, an additional, faster glycinergic component emerged. At these ages, GABA A, glycine, or both types of receptors mediated transmission, even at single synaptic sites. Thereafter, glycinergic development greatly accelerated. By P25, evoked inhibitory postsynaptic currents (IPSCs) were 10 times briefer and 100 times larger than those measured in the youngest group, suggesting a proliferation of synaptic inputs activating fast-kinetic receptors. Glycinergic miniature IPSCs (mIPSCs) increased markedly in size and decay rate with age. GABAergic mIPSCs also accelerated, but declined slightly in amplitude. Overall, the efficacy of GABAergic inputs showed little maturation between P5 and P20. Although gramicidin perforated-patch recordings revealed that GABA or glycine depolarized P5 - P7 cells but hyperpolarized P14 - P15 cells, the young depolarizing inputs were not suprathreshold. In addition, vesicle-release properties of inhibitory axons also matured: GABAergic responses in immature rats were highly asynchronous, while in older rats, precise, phasic glycinergic IPSCs could transmit even with 500-Hz stimuli. Thus development of inhibition is characterized by coordinated modifications to transmitter systems, vesicle release kinetics, Cl- gradients, receptor properties, and numbers of synaptic inputs. The apparent switch in GABA/glycine transmission was predominantly due to enhanced glycinergic function.
引用
收藏
页码:819 / 828
页数:10
相关论文
共 66 条
[1]   IMMUNOCYTOCHEMICAL EVIDENCE FOR INHIBITORY AND DISINHIBITORY CIRCUITS IN THE SUPERIOR OLIVE [J].
ADAMS, JC ;
MUGNAINI, E .
HEARING RESEARCH, 1990, 49 (1-3) :281-298
[2]   CLONING OF A GLYCINE RECEPTOR SUBTYPE EXPRESSED IN RAT-BRAIN AND SPINAL-CORD DURING A SPECIFIC PERIOD OF NEURONAL DEVELOPMENT [J].
AKAGI, H ;
HIRAI, K ;
HISHINUMA, F .
FEBS LETTERS, 1991, 281 (1-2) :160-166
[3]   HETEROGENEITY OF GLYCINE RECEPTORS AND THEIR MESSENGER-RNAS IN RAT-BRAIN AND SPINAL-CORD [J].
AKAGI, H ;
MILEDI, R .
SCIENCE, 1988, 242 (4876) :270-273
[4]  
Atluri PP, 1998, J NEUROSCI, V18, P8214
[5]   Inhibitory control at a synaptic relay [J].
Awatramani, GB ;
Turecek, R ;
Trussell, LO .
JOURNAL OF NEUROSCIENCE, 2004, 24 (11) :2643-2647
[6]  
Balakrishnan V, 2003, J NEUROSCI, V23, P4134
[7]   GLYCINE RECEPTOR HETEROGENEITY IN RAT SPINAL-CORD DURING POSTNATAL-DEVELOPMENT [J].
BECKER, CM ;
HOCH, W ;
BETZ, H .
EMBO JOURNAL, 1988, 7 (12) :3717-3726
[8]   Excitatory actions of GABA during development: The nature of the nurture [J].
Ben-Ari, Y .
NATURE REVIEWS NEUROSCIENCE, 2002, 3 (09) :728-739
[9]   GIANT SYNAPTIC POTENTIALS IN IMMATURE RAT CA3 HIPPOCAMPAL-NEURONS [J].
BENARI, Y ;
CHERUBINI, E ;
CORRADETTI, R ;
GAIARSA, JL .
JOURNAL OF PHYSIOLOGY-LONDON, 1989, 416 :303-325
[10]   Neonatal development of the rat visual cortex:: synaptic function of GABAA receptor α subunits [J].
Bosman, LWJ ;
Rosahl, TW ;
Brussaard, AB .
JOURNAL OF PHYSIOLOGY-LONDON, 2002, 545 (01) :169-181