What Should We Make with CO2 and How Can We Make It?

被引:1268
作者
Bushuyev, Oleksandr S. [1 ,2 ]
De Luna, Phil [3 ]
Cao Thang Dinh [1 ]
Tao, Ling [4 ]
Saur, Genevieve [5 ]
van de lagemaat, Jao [6 ]
Kelley, Shana O. [2 ]
Sargent, Edward H. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
[2] Univ Toronto, Fac Med, Leslie Dan Fac Pharm, Biochem, Toronto, ON M5S 3M2, Canada
[3] Univ Toronto, Dept Mat Sci & Engn, Toronto, ON M5S 3G4, Canada
[4] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO USA
[5] Natl Renewable Energy Lab, Transportat & Hydrogen Syst Ctr, Golden, CO USA
[6] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO USA
基金
加拿大自然科学与工程研究理事会;
关键词
CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; ELECTROREDUCTION; INSIGHTS; COPPER;
D O I
10.1016/j.joule.2017.09.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this forward-looking Perspective, we discuss the current state of technology and the economics of electrocatalytic transformation of CO2 into various chemical fuels. Our analysis finds that short-chain simple building-block molecules currently present the most economically compelling targets. Making an optimistic prediction of technology advancement in the future, we propose the gradual rise of photocatalytic, CO2 polymerization, biohybrid, and molecular machine technologies to augment and enhance already practical electrocatalytic CO2 conversion methods.
引用
收藏
页码:825 / 832
页数:8
相关论文
共 30 条
[1]  
[Anonymous], 2016, GLOB ROADM IMPL CO2
[2]  
Bloom A., 2016, TP-6A20-64
[3]   Plasmon-Enhanced PhotoCatalytic CO2 Conversion within Metal Organic Frameworks under Visible Light [J].
Choi, Kyung Min ;
Kim, Dohyung ;
Rungtaweevoranit, Bunyarat ;
Trickett, Christopher A. ;
Barmanbek, Jesika Trese Deniz ;
Alshammari, Ahmad S. ;
Yang, Peidong ;
Yaghi, Omar M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (01) :356-362
[4]   The path towards sustainable energy [J].
Chu, Steven ;
Cui, Yi ;
Liu, Nian .
NATURE MATERIALS, 2017, 16 (01) :16-22
[5]   Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction [J].
De Luna, Phil ;
Quintero-Bermudez, Rafael ;
Cao-Thang Dinh ;
Ross, Michael B. ;
Bushuyev, Oleksandr S. ;
Todorovic, Petar ;
Regier, Tom ;
Kelley, Shana O. ;
Yang, Peidong ;
Sargent, Edward H. .
NATURE CATALYSIS, 2018, 1 (02) :103-110
[6]   The role of reticular chemistry in the design of CO2 reduction catalysts [J].
Diercks, Christian S. ;
Liu, Yuzhong ;
Cordova, Kyle E. ;
Yaghi, Omar M. .
NATURE MATERIALS, 2018, 17 (04) :301-307
[7]   Morphology Matters: Tuning the Product Distribution of CO2 Electroreduction on Oxide-Derived Cu Foam Catalysts [J].
Dutta, Abhijit ;
Rahaman, Motiar ;
Luedi, Nicola C. ;
Broekmann, Peter .
ACS CATALYSIS, 2016, 6 (06) :3804-3814
[8]   Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel [J].
Gao, Shan ;
Lin, Yue ;
Jiao, Xingchen ;
Sun, Yongfu ;
Luo, Qiquan ;
Zhang, Wenhua ;
Li, Dianqi ;
Yang, Jinlong ;
Xie, Yi .
NATURE, 2016, 529 (7584) :68-+
[9]   Identification of Possible Pathways for C-C Bond Formation during Electrochemical Reduction of CO2: New Theoretical Insights from an Improved Electrochemical Model [J].
Goodpaster, Jason D. ;
Bell, Alexis T. ;
Head-Gordon, Martin .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (08) :1471-1477
[10]   Proton-coupled electron transfer in the electrocatalysis of CO2 reduction: prediction of sequential vs. concerted pathways using DFT [J].
Gottle, Adrien J. ;
Koper, Marc T. M. .
CHEMICAL SCIENCE, 2017, 8 (01) :458-465