Oxidation of carbazole, N-ethylcarbazole, fluorene, and dibenzothiophene by the laccase of Coriolopsis gallica

被引:41
作者
Bressler, DC [1 ]
Fedorak, PM [1 ]
Pickard, MA [1 ]
机构
[1] Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2E9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
fungal laccase; heterocycles; ionization potential; laccase; oxidation;
D O I
10.1023/A:1005633212866
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Purified laccase from Coriolopsis gallica UAMH8260 oxidized carbazole, N-ethylcarbazole, fluorene, and dibenzothiophene in the presence of 1-hydroxybenzotriazole and 2,2'-azinobis (3-ethylbenzthiazoline-6-sulfonic acid) as free radical mediators. Susceptibility to laccase oxidation appears related to the ionization potential (IP) of the substrate: compounds with an IP above 8.52, dibenzofuran (IP = 8.77) and benzothiophene (IP = 8.73) were not attacked. Carbazole (IP = 7.68) was the most sensitive to oxidation with > 99% transformed with 10 milliunits of laccase after 1 h, though most reactions were carried out for 18 h. 9-Fluorenone was identified as the product of fluorene (IP = 8.52) oxidation, and dibenzothiophene sulfone from dibenzothiophene (IP = 8.44). Although carbazole and N-ethylcarbazole were both completely removed within 18 h, no oxidation or condensation metabolites were detected. This investigation is the first to report the oxidation of dibenzothiophene, carbazole, and N-ethylcarbazole by laccase.
引用
收藏
页码:1119 / 1125
页数:7
相关论文
共 22 条
[1]   ELECTROCHEMICAL AND SPECTROSCOPIC PROPERTIES OF CATION RADICALS .3. REACTION PATHWAYS OF CARBAZOLIUM RADICAL IONS [J].
AMBROSE, JF ;
CARPENTER, LL ;
NELSON, RF .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1975, 122 (07) :876-894
[2]  
[Anonymous], IONIZATION POTENTIAL
[3]   MINERALIZATION OF CHLOROANILINE LIGNIN CONJUGATES AND OF FREE CHLOROANILINES BY THE WHITE ROT FUNGUS PHANEROCHAETE-CHRYSOSPORIUM [J].
ARJMAND, M ;
SANDERMANN, H .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 1985, 33 (06) :1055-1060
[4]  
Beaudette LA, 1998, APPL ENVIRON MICROB, V64, P2020
[5]   Low surfactant concentration increases fungal mineralization of a polychlorinated biphenyl congener but has no effect on overall metabolism [J].
Beaudette, LA ;
Ward, OP ;
Pickard, MA ;
Fedorak, PM .
LETTERS IN APPLIED MICROBIOLOGY, 2000, 30 (02) :155-160
[6]   Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes [J].
Bogan, BW ;
Lamar, RT .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1996, 62 (05) :1597-1603
[7]  
BRESSLER DC, 2000, IN PRESS CAN J MICRO
[8]  
Gianfreda L., 1999, BIOREMEDIAT J, V3, P1, DOI DOI 10.1080/10889869991219163
[9]   MICROBIAL-DEGRADATION OF EXPLOSIVES AND RELATED-COMPOUNDS [J].
GORONTZY, T ;
DRZYZGA, O ;
KAHL, MW ;
BRUNSNAGEL, D ;
BREITUNG, J ;
VONLOEW, E ;
BLOTEVOGEL, KH .
CRITICAL REVIEWS IN MICROBIOLOGY, 1994, 20 (04) :265-284
[10]   COMPARISON OF LIGNIN PEROXIDASE, HORSERADISH-PEROXIDASE AND LACCASE IN THE OXIDATION OF METHOXYBENZENES [J].
KERSTEN, PJ ;
KALYANARAMAN, B ;
HAMMEL, KE ;
REINHAMMAR, B ;
KIRK, TK .
BIOCHEMICAL JOURNAL, 1990, 268 (02) :475-480