Undecidable problems for probabilistic automata of fixed dimension

被引:64
作者
Blondel, VD [1 ]
Canterini, V [1 ]
机构
[1] Univ Louvain, Div Appl Math, B-1348 Louvain, Belgium
关键词
D O I
10.1007/s00224-003-1061-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that several problems associated with probabilistic finite automata are undecidable for automata whose number of input letters and number of states are fixed. As a corollary of one of our results we prove that the problem of determining if the set of all products of two 47 x 47 matrices with nonnegative rational entries is bounded is undecidable.
引用
收藏
页码:231 / 245
页数:15
相关论文
共 32 条
[1]   ARTHUR-MERLIN GAMES - A RANDOMIZED PROOF SYSTEM, AND A HIERARCHY OF COMPLEXITY CLASSES [J].
BABAI, L ;
MORAN, S .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1988, 36 (02) :254-276
[2]  
Bertoni A., 1975, GI 4 JAHRESTAGUNG LE, V26, P107
[3]  
Bertoni A., 1977, Automata, Languages and Programming, V52, P87
[4]   When is a pair of matrices mortal? [J].
Blondel, VD ;
Tsitsiklis, JN .
INFORMATION PROCESSING LETTERS, 1997, 63 (05) :283-286
[5]   A survey of computational complexity results in systems and control [J].
Blondel, VD ;
Tsitsiklis, JN .
AUTOMATICA, 2000, 36 (09) :1249-1274
[6]   The boundedness of all products of a pair of matrices is undecidable [J].
Blondel, VD ;
Tsitsiklis, JN .
SYSTEMS & CONTROL LETTERS, 2000, 41 (02) :135-140
[7]  
Blythe J., 1999, Artificial intelligence today. Recent trends and developments, P85
[8]   On the power of finite automata with both nondeterministic and probabilistic states [J].
Condon, A ;
Hellerstein, L ;
Pottle, S ;
Wigderson, A .
SIAM JOURNAL ON COMPUTING, 1998, 27 (03) :739-762
[9]  
Condon Anne, 1989, P 30 ANN S FDN COMP, P462
[10]  
EHRENFEUCHT A, 1982, THEOR COMPUT SCI, V21, P119, DOI 10.1016/0304-3975(89)90080-7