Nonlinear Galerkin methods for 3D magnetohydrodynamic equations

被引:6
作者
Schmidtmann, O [1 ]
Feudel, F [1 ]
Seehafer, N [1 ]
机构
[1] Univ Potsdam, Max Planck Grp Nichtlineare Dynam, D-14415 Potsdam, Germany
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1997年 / 7卷 / 07期
关键词
D O I
10.1142/S0218127497001187
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The usage of nonlinear Galerkin methods for the numerical solution of partial differential equations is demonstrated by treating an example. We describe the implementation of a nonlinear Galerkin method based on an approximate inertial manifold for the 3D magnetohydrodynamic equations and compare its efficiency with the linear Galerkin approximation. Special bifurcation points, time-averaged values of energy and enstrophy as well as Kaplan-Yorke dimensions are calculated for both schemes in order to estimate the number of modes necessary to correctly describe the behavior of the exact solutions.
引用
收藏
页码:1497 / 1507
页数:11
相关论文
共 42 条
[1]  
[Anonymous], 1990, DISSIPATIVE STRUCTUR, DOI DOI 10.1016/B978-0-08-092445-8.50011-0
[2]   GLOBAL LYAPUNOV EXPONENTS, KAPLAN-YORKE FORMULAS AND THE DIMENSION OF THE ATTRACTORS FOR 2D NAVIER-STOKES EQUATIONS [J].
CONSTANTIN, P ;
FOIAS, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (01) :1-27
[3]   DETERMINING MODES AND FRACTAL DIMENSION OF TURBULENT FLOWS [J].
CONSTANTIN, P ;
FOIAS, C ;
MANLEY, OP ;
TEMAM, R .
JOURNAL OF FLUID MECHANICS, 1985, 150 (JAN) :427-440
[4]   A CLASS OF NUMERICAL ALGORITHMS FOR LARGE TIME INTEGRATION - THE NONLINEAR GALERKIN METHODS [J].
DEVULDER, C ;
MARION, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (02) :462-483
[5]  
DEVULDER C, 1993, MATH COMPUT, V60, P495, DOI 10.1090/S0025-5718-1993-1160273-1
[6]  
Doering C. R., 1995, APPL ANAL NAVIER STO, P12
[7]   CHAOTIC STREAMLINES IN THE ABC FLOWS [J].
DOMBRE, T ;
FRISCH, U ;
GREENE, JM ;
HENON, M ;
MEHR, A ;
SOWARD, AM .
JOURNAL OF FLUID MECHANICS, 1986, 167 :353-391
[8]   SUBGRID MODELING AND THE INTERACTION OF SMALL AND LARGE WAVELENGTHS IN TURBULENT FLOWS [J].
DUBOIS, T ;
JAUBERTEAU, F ;
MARION, M ;
TEMAM, R .
COMPUTER PHYSICS COMMUNICATIONS, 1991, 65 (1-3) :100-106
[9]   Symmetry-breaking bifurcations for the magnetohydrodynamic equations with helical forcing [J].
Feudel, F ;
Seehafer, N ;
Galanti, B ;
Rudiger, S .
PHYSICAL REVIEW E, 1996, 54 (03) :2589-2596
[10]   FLUID HELICITY AND DYNAMO BIFURCATIONS [J].
FEUDEL, F ;
SEEHAFER, N ;
SCHMIDTMANN, O .
PHYSICS LETTERS A, 1995, 202 (01) :73-78