Percolation as a model for informetric distributions: Fragment size distribution characterised by Bradford curves

被引:11
作者
Bogaert, J
Rousseau, R
Van Hecke, P
机构
[1] KHBO, B-8400 Oostende, Belgium
[2] Univ Instelling Antwerp, Dept Biol, B-2610 Antwerp, Belgium
[3] Univ Instelling Antwerp, Dept Lib & Informat Sci, B-2610 Antwerp, Belgium
关键词
D O I
10.1023/A:1005678707987
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
It is shown how Bradford curves, i.e. cumulative rank-frequency functions, as used in informetrics, can describe the fragment size distribution of percolation models. This interesting fact is explained by arguing that some aspects of percolation can he interpreted as a model for the success-breeds-success or cumulative advantage phenomenon. We claim, moreover, that the percolation model can be used as a model to study (generalised) bibliographies. This article shows how ideas and techniques studied and developed in informetrics and scientometrics can successfully be applied in other fields of science, and vice versa.
引用
收藏
页码:195 / 206
页数:12
相关论文
共 35 条
[1]  
[Anonymous], 2018, INTRO PERCOLATION TH
[2]  
Bender DJ, 1998, ECOLOGY, V79, P517, DOI 10.1890/0012-9658(1998)079[0517:HLAPDA]2.0.CO
[3]  
2
[4]   Generating random percolation clusters [J].
Bogaert, J ;
Impens, I .
APPLIED MATHEMATICS AND COMPUTATION, 1998, 91 (2-3) :197-208
[5]   Twist number statistics as an additional measure of habitat perimeter irregularity [J].
Bogaert, J ;
Van Hecke, P ;
Moermans, R ;
Impens, I .
ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 1999, 6 (03) :275-290
[6]  
Bradford SC., 1934, ENGINEERING, V137, P173, DOI DOI 10.1177/016555158501000407
[7]  
BRAGA GM, 1978, P AM SOC INFORM SCI, V15, P51
[8]  
Bunde A., 1995, FRACTALS SCI, P1
[9]  
CHEN YS, 1995, J AM SOC INFORM SCI, V46, P370, DOI 10.1002/(SICI)1097-4571(199506)46:5<370::AID-ASI7>3.0.CO
[10]  
2-J