A global dataset of Palmer Drought Severity Index for 1870-2002: Relationship with soil moisture and effects of surface warming

被引:1604
作者
Dai, A [1 ]
Trenberth, KE [1 ]
Qian, TT [1 ]
机构
[1] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
关键词
D O I
10.1175/JHM-386.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A monthly dataset of Palmer Drought Severity Index (PDSI) from 1870 to 2002 is derived using historical precipitation and temperature data for global land areas on a 2.58 grid. Over Illinois, Mongolia, and parts of China and the former Soviet Union, where soil moisture data are available, the PDSI is significantly correlated ( r = 0.5 to 0.7) with observed soil moisture content within the top 1-m depth during warm-season months. The strongest correlation is in late summer and autumn, and the weakest correlation is in spring, when snowmelt plays an important role. Basin-averaged annual PDSI covary closely ( r = 0.6 to 0.8) with streamflow for seven of world's largest rivers and several smaller rivers examined. The results suggest that the PDSI is a good proxy of both surface moisture conditions and streamflow. An empirical orthogonal function (EOF) analysis of the PDSI reveals a fairly linear trend resulting from trends in precipitation and surface temperature and an El Nino Southern Oscillation (ENSO)-induced mode of mostly interannual variations as the two leading patterns. The global very dry areas, defined as PDSI < -3.0, have more than doubled since the 1970s, with a large jump in the early 1980s due to an ENSO-induced precipitation decrease and a subsequent expansion primarily due to surface warming, while global very wet areas (PDSI > +3.0) declined slightly during the 1980s. Together, the global land areas in either very dry or very wet conditions have increased from; 20% to 38% since 1972, with surface warming as the primary cause after the mid-1980s. These results provide observational evidence for the increasing risk of droughts as anthropogenic global warming progresses and produces both increased temperatures and increased drying.
引用
收藏
页码:1117 / 1130
页数:14
相关论文
共 80 条
[1]  
Abakumova GM, 1996, J CLIMATE, V9, P1319, DOI 10.1175/1520-0442(1996)009<1319:EOLTCI>2.0.CO
[2]  
2
[3]  
ALLEY WM, 1984, J CLIM APPL METEOROL, V23, P1100, DOI 10.1175/1520-0450(1984)023<1100:TPDSIL>2.0.CO
[4]  
2
[5]  
[Anonymous], 2001, PROJECTIONS FUTURE C
[6]   Hydrologic cycle explains the evaporation paradox [J].
Brutsaert, W ;
Parlange, MB .
NATURE, 1998, 396 (6706) :30-30
[7]   Evaporation and potential evapotranspiration in India under conditions of recent and future climate change [J].
Chattopadhyay, N ;
Hulme, M .
AGRICULTURAL AND FOREST METEOROLOGY, 1997, 87 (01) :55-73
[8]  
Chen MY, 2002, J HYDROMETEOROL, V3, P249, DOI 10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO
[9]  
2
[10]   The changing relationship between ENSO variability and moisture balance in the continental United States [J].
Cole, JE ;
Cook, ER .
GEOPHYSICAL RESEARCH LETTERS, 1998, 25 (24) :4529-4532