Canadian Association of Neuroscience Review: Cellular and synaptic insights into physiological and pathological pain - EJLB-CIHR Michael Smith Chair in Neurosciences and Mental Health Lecture

被引:24
作者
Zhuo, M [1 ]
机构
[1] Univ Toronto, Dept Physiol, Fac Med, Ctr Study Pain, Toronto, ON M5S 1A8, Canada
关键词
D O I
10.1017/S031716710001684X
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Neurons and synapses in the central nervous system are plastic, undergoing long-term changes throughout life. Studies of molecular and cellular mechanisms of such changes not only provide important insight into how we learn and store new knowledge in our brains, but they also reveal the mechanisms of pathological changes that occur following injury. The author proposes that during induction, neuronal mechanisms underlying physiological functions, such as learning and memory, may share some common signaling molecules with abnormal or injury-related changes in the brain. Distinct synaptic and neuronal network mechanisms are involved in pathological pain as compared to cognitive learning and memory. Nociceptive information is transmitted and regulated at different levels of the brain, from the spinal cord to the forebrain. Furthermore, N-methyl-D-aspartate receptor-dependent and calcium-calmodulin activated adenylyl cyclases (AC1 and AC8) in the anterior cingulate cortex play important roles in the induction and expression of persistent inflammatory and neuropathic pain. Neuronal activity in the anterior cingulate cortex can also influence nociceptive transmission in the dorsal horn of the spinal cord by activating the endogenous facilitatory system. Our results provide important synaptic and molecular insights into physiological responses to injury.
引用
收藏
页码:27 / 36
页数:10
相关论文
共 73 条
[1]   Silent NMDA receptor-mediated synapses are developmentally regulated in the dorsal horn of the rat spinal cord [J].
Baba, H ;
Doubell, TP ;
Moore, KA ;
Woolf, CJ .
JOURNAL OF NEUROPHYSIOLOGY, 2000, 83 (02) :955-962
[2]  
Bardoni R, 1998, J NEUROSCI, V18, P6558
[3]   ENDOGENOUS PAIN CONTROL-SYSTEMS - BRAIN-STEM SPINAL PATHWAYS AND ENDORPHIN CIRCUITRY [J].
BASBAUM, AI ;
FIELDS, HL .
ANNUAL REVIEW OF NEUROSCIENCE, 1984, 7 :309-338
[4]   Spinal serotonergic receptors mediate facilitation of a nociceptive reflex by subcutaneous formalin injection into the hindpaw in rats [J].
Calejesan, AA ;
Ch'ang, MHC ;
Zhuo, M .
BRAIN RESEARCH, 1998, 798 (1-2) :46-54
[5]   Descending facilitatory modulation of a behavioral nociceptive response by stimulation in the adult rat anterior cingulate cortex [J].
Calejesan, AA ;
Kim, SJ ;
Zhuo, M .
EUROPEAN JOURNAL OF PAIN, 2000, 4 (01) :83-96
[6]   Forebrain mechanisms of nociception and pain: Analysis through imaging [J].
Casey, KL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (14) :7668-7674
[7]   Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain [J].
Coull, JAM ;
Boudreau, D ;
Bachand, K ;
Prescott, SA ;
Nault, F ;
Sik, A ;
De Koninck, P ;
De Koninck, Y .
NATURE, 2003, 424 (6951) :938-942
[8]   GRIP: A synaptic PDZ domain-containing protein that interacts with AMPA receptors [J].
Dong, HL ;
OBrien, RJ ;
Fung, ET ;
Lanahan, AA ;
Worley, PF ;
Huganir, RL .
NATURE, 1997, 386 (6622) :279-284
[9]   Characterization of the glutamate receptor-interacting proteins GRIP1 and GRIP2 [J].
Dong, HL ;
Zhang, PS ;
Song, IS ;
Petralia, RS ;
Liao, DZ ;
Huganir, RL .
JOURNAL OF NEUROSCIENCE, 1999, 19 (16) :6930-6941
[10]  
FIELDS HL, 1991, ANNU REV NEUROSCI, V14, P219, DOI 10.1146/annurev.neuro.14.1.219