Evolutionary dynamics of large numts in the human genome:: Rarity of independent insertions and abundance of post-insertion duplications

被引:89
作者
Hazkani-Covo, E
Sorek, R
Graur, D [1 ]
机构
[1] Tel Aviv Univ, George S Wise Fac Life Sci, Dept Zool, IL-69978 Tel Aviv, Israel
[2] Compugen Ltd, IL-69512 Tel Aviv, Israel
关键词
numts; human genome; promiscuous DNA; gene duplicaton; pseudogenes; primates;
D O I
10.1007/s00239-002-2390-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We determined the phylogenetic positions of 82 large nuclear pseudogenes of mitochondrial origin (numts) within the human genome. For each numt, two possibilities pertaining to its origin were considered: (1) independent insertion from the mitochondria into the nucleus, or (2) genomic duplication subsequent to the insertion. A significant increase in the rate of numt accumulation is seen after the divergence of Platyrrhini (New World monkeys) from the Catarrhini (Old World monkeys, apes and humans). By using pairwise phylogenetic analyses, we were able to demonstrate that this peak in numt accumulation is mostly the result of duplication of preexisting nuclear numts rather than the result of an increase in mitochondrial-sequence insertion. In fact, only about a third of all the numt repertoire in the human nuclear genome is due to insertions of mitochondrial sequences, the rest originated as duplications of preexisting numts. Hence, we conclude that numt insertion occurs at a much lower rate than previously reported. As expected under the assumption that genomic duplications occur at rates that are uninfluenced by content, older numts were found to be duplicated more times than recently inserted ones.
引用
收藏
页码:169 / 174
页数:6
相关论文
共 22 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]  
BARNETT V, 1994, OUTLINERS STAT DATA
[3]   Frequent assimilation of mitochondrial DNA by grasshopper nuclear genomes [J].
Bensasson, D ;
Zhang, DX ;
Hewitt, GM .
MOLECULAR BIOLOGY AND EVOLUTION, 2000, 17 (03) :406-415
[4]   Mitochondrial pseudogenes: evolution's misplaced witnesses [J].
Bensasson, D ;
Zhang, DX ;
Hartl, DL ;
Hewitt, GM .
TRENDS IN ECOLOGY & EVOLUTION, 2001, 16 (06) :314-321
[5]   PERVASIVE MIGRATION OF ORGANELLAR DNA TO THE NUCLEUS IN PLANTS [J].
BLANCHARD, JL ;
SCHMIDT, GW .
JOURNAL OF MOLECULAR EVOLUTION, 1995, 41 (04) :397-406
[6]   Animal mitochondrial genomes [J].
Boore, JL .
NUCLEIC ACIDS RESEARCH, 1999, 27 (08) :1767-1780
[7]   INSERTIONS AND DUPLICATIONS OF MTDNA IN THE NUCLEAR GENOMES OF OLD-WORLD MONKEYS AND HOMINOIDS [J].
COLLURA, RV ;
STEWART, CB .
NATURE, 1995, 378 (6556) :485-489
[8]  
ELLIS J, 1982, NATURE, V299, P678, DOI 10.1038/299678a0
[9]  
Felsenstein J., 1993, PHYLIP PHYLOGENY INF
[10]   MITOCHONDRIAL DNA-LIKE SEQUENCES IN THE HUMAN NUCLEAR GENOME - CHARACTERIZATION AND IMPLICATIONS IN THE EVOLUTION OF MITOCHONDRIAL-DNA [J].
FUKUDA, M ;
WAKASUGI, S ;
TSUZUKI, T ;
NOMIYAMA, H ;
SHIMADA, K ;
MIYATA, T .
JOURNAL OF MOLECULAR BIOLOGY, 1985, 186 (02) :257-266