Wavelet-based, texture analysis and synthesis using hidden Markov models

被引:109
作者
Fan, GL [1 ]
Xia, XG [1 ]
机构
[1] Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA
关键词
hidden Markov models (HMMs); statistical texture models; texture classification; texture segmentation; texture synthesis; textures analysis; wavelet transform;
D O I
10.1109/TCSI.2002.807520
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Wavelet-domain hidden Markov models (HMMs), in particular, hidden Markov tree (HMT), were recently proposed and applied to image processing, where it was usually assumed that three subbands of the two-dimensional discrete wavelet transform (DWT), i.e., HL, LH, and HH, are independent. In this paper, we study wavelet-based texture analysis and synthesis using HMMs. Particularly, we develop a new HMM, called HMT-3S, for statistical texture characterization in the wavelet domain. In addition to the joint statistics captured by HMT, the new HMT-3S can also exploit the cross correlation across DWT subbands. Meanwhile, HMT-3S can be characterized by using the graphical grouping technique, and has the same tree structure as HMT. The proposed HMT-3S is applied to texture analysis, including classification and segmentation, and texture synthesis with improved performance over HMT. Specifically, for texture classification, we study four wavelet-based methods, and experimental results show that HMT-3S provides the highest percentage of correct classification of over 95 % upon a set of 55 Brodatz textures. For texture segmentation, we demonstrate that more accurate texture characterization from HMT-3S allows the significant improvements in terms of both classification accuracy and boundary localization. For texture synthesis, we develop, an iterative maximum likelihood-based texture synthesis algorithm which adopts HMT or HMT-3S to impose the joint statistics of the texture DWT, and it is shown that the-new HMT-3S enables more visually similar results than HMT does.
引用
收藏
页码:106 / 120
页数:15
相关论文
共 64 条
[1]  
[Anonymous], 1998, The handbook of pattern recognition and computer vision
[2]   MULTIPLE RESOLUTION SEGMENTATION OF TEXTURED IMAGES [J].
BOUMAN, C ;
LIU, BD .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1991, 13 (02) :99-113
[3]   A MULTISCALE RANDOM-FIELD MODEL FOR BAYESIAN IMAGE SEGMENTATION [J].
BOUMAN, CA ;
SHAPIRO, M .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1994, 3 (02) :162-177
[4]  
Brodatz P, 1966, TEXTURES PHOTOGRAPHI
[5]   A perceptually lossless, model-based, texture compression technique [J].
Campisi, P ;
Hatzinakos, D ;
Neri, A .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (08) :1325-1336
[6]  
CHANG SG, 1998, P IEEE INT C IM PROC
[7]   Texture analysis and classification with tree-structured wavelet transform [J].
Chang, Tianhorng ;
Kuo, C. -C. Jay .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1993, 2 (04) :429-441
[8]   Multiscale Bayesian segmentation using a trainable context model [J].
Cheng, H ;
Bouman, CA .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2001, 10 (04) :511-525
[9]  
CHENG H, 1998, P IEEE INT C IM PROC
[10]   Adaptive Bayesian wavelet shrinkage [J].
Chipman, HA ;
Kolaczyk, ED ;
McCullogh, RE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (440) :1413-1421