Accurate sampling using Langevin dynamics

被引:288
作者
Bussi, Giovanni [1 ]
Parrinello, Michele [1 ]
机构
[1] ETH, Dept Chem & Appl Biosci, CH-6900 Lugano, Switzerland
关键词
D O I
10.1103/PhysRevE.75.056707
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show how to derive a simple integrator for the Langevin equation and illustrate how it is possible to check the accuracy of the obtained distribution on the fly, using the concept of effective energy introduced in a recent paper [J. Chem. Phys. 126, 014101 (2007)]. Our integrator leads to correct sampling also in the difficult high-friction limit. We also show how these ideas can be applied in practical simulations, using a Lennard-Jones crystal as a paradigmatic case.
引用
收藏
页数:7
相关论文
共 35 条
  • [1] Allen M. P., 2017, Computer Simulation of Liquids, DOI [10.1093/oso/9780198803195.001.0001, DOI 10.1093/OSO/9780198803195.001.0001]
  • [2] LANGEVIN SIMULATIONS OF LATTICE FIELD-THEORIES
    BATROUNI, GG
    KATZ, GR
    KRONFELD, AS
    LEPAGE, GP
    SVETITSKY, B
    WILSON, KG
    [J]. PHYSICAL REVIEW D, 1985, 32 (10): : 2736 - 2747
  • [3] STOCHASTIC BOUNDARY-CONDITIONS FOR MOLECULAR-DYNAMICS SIMULATIONS OF ST2 WATER
    BRUNGER, A
    BROOKS, CL
    KARPLUS, M
    [J]. CHEMICAL PHYSICS LETTERS, 1984, 105 (05) : 495 - 500
  • [4] Canonical sampling through velocity rescaling
    Bussi, Giovanni
    Donadio, Davide
    Parrinello, Michele
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01)
  • [5] HYBRID MONTE-CARLO
    DUANE, S
    KENNEDY, AD
    PENDLETON, BJ
    ROWETH, D
    [J]. PHYSICS LETTERS B, 1987, 195 (02) : 216 - 222
  • [6] Fourth-order algorithms for solving the multivariable Langevin equation and the Kramers equation
    Forbert, HA
    Chin, SA
    [J]. PHYSICAL REVIEW E, 2001, 63 (01): : 1 - 7
  • [7] Frenkel D., 2002, Understanding Molecular Simulation
  • [8] Shadow mass and the relationship between velocity and momentum in symplectic numerical integration
    Gans, J
    Shalloway, D
    [J]. PHYSICAL REVIEW E, 2000, 61 (04) : 4587 - 4592
  • [9] Gardiner C.W., 1994, HDB STOCHASTIC METHO
  • [10] NUMERICAL-INTEGRATION OF STOCHASTIC DIFFERENTIAL-EQUATIONS .2.
    GREENSIDE, HS
    HELFAND, E
    [J]. BELL SYSTEM TECHNICAL JOURNAL, 1981, 60 (08): : 1927 - 1940