Estimating chlorophyll content of crops from hyperspectral data using a normalized area over reflectance curve (NAOC)

被引:107
作者
Delegido, Jesus [1 ]
Alonso, Luis [1 ]
Gonzalez, Gonzalo [1 ]
Moreno, Jose [1 ]
机构
[1] Univ Valencia, Dept Earth Phys & Thermodynam, Fac Phys, E-46100 Burjassot, Valencia, Spain
关键词
Chlorophyll; Hyperspectral remote sensing; Leaf area index; fCOVER; Proba/CHRIS; CASI; BAND-DEPTH ANALYSIS; VEGETATION INDEXES; RED EDGE; CANOPY REFLECTANCE; LEAF CHLOROPHYLL; LAI; RETRIEVAL; RADIATION; CORN; INVERSION;
D O I
10.1016/j.jag.2010.02.003
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The Normalized Area Over reflectance Curve (NAOC) is proposed as a new index for remote sensing estimation of the leaf chlorophyll content of heterogeneous areas with different crops, different canopies and different types of bare soil. This index is based on the calculation of the area over the reflectance curve obtained by high spectral resolution reflectance measurements, determined, from the integral of the red-near-infrared interval, divided by the maximum reflectance in that spectral region. For this, use has been made of the experimental data of the SPARC campaigns, where in situ measurements were made of leaf chlorophyll content, LAI and fCOVER of 9 different crops - thus, yielding 300 different values with broad variability of these biophysical parameters. In addition, Proba/CHRIS hyperspectral images were obtained simultaneously to the ground measurements. By comparing the spectra of each pixel with its experimental leaf chlorophyll value, the NAOC was proven to exhibit a linear correlation to chlorophyll content. Calculating the correlation between these variables in the 600-800 nm interval, the best correlation was obtained by computing the integral of the spectral reflectance curve between 643 and 795 nm, which practically covers the spectral range of maximum chlorophyll absorption (at around 670 nm) and maximum leaf reflectance in the infrared (750-800 nm). Based on a Proba/CHRIS image, a chlorophyll map was generated using NAOC and compared with the land-use (crops classification) map. The method yielded a leaf chlorophyll content map of the study area, comprising a large heterogeneous zone. An analysis was made to determine whether the method also serves to estimate the total chlorophyll content of a canopy, multiplying the leaf chlorophyll content by the LAI. To validate the method, use was made of the data from another campaign ((SEN2FLEX), in which measurements were made of different biophysical parameters of 7 crops, and hyperspectral images were obtained with the CASI imaging radiometer from an aircraft. Applying the method to a CASI image, a map of leaf chlorophyll content was obtained, which on, establishing comparisons with the experimental data allowed us to estimate chlorophyll with a root mean square error of 4.2 mu g/cm(2), similar or smaller than other methods but with the improvement of applicability to a large set of different crop types. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:165 / 174
页数:10
相关论文
共 66 条
[1]  
Abadia Javier, 1993, P327
[2]  
Alonso L., 2005, P 3 CHRIS PROBA WORK
[3]  
[Anonymous], 1975, Primary Productivity of the Biosphere, DOI [DOI 10.1007/978-3-642-80913-2_15, 10.1007/978-3-642-80913-2_15]
[4]   A comparison of hyperspectral chlorophyll indices for wheat crop chlorophyll content estimation using laboratory reflectance measurements [J].
Bannari, Abderrazak ;
Khurshid, K. Shahid ;
Staenz, Karl ;
Schwarz, John W. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10) :3063-3074
[5]   Quantification of plant stress using remote sensing observations and crop models:: the case of nitrogen management [J].
Baret, F. ;
Houles, V. ;
Guerif, M. .
JOURNAL OF EXPERIMENTAL BOTANY, 2007, 58 (04) :869-880
[6]   The PROBA/CHRIS mission: A low-cost smallsat for hyperspectral multiangle observations of the earth surface and atmosphere [J].
Barnsley, MJ ;
Settle, JJ ;
Cutter, MA ;
Lobb, DR ;
Teston, F .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (07) :1512-1520
[7]   Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies [J].
Blackmer, TM ;
Schepers, JS ;
Varvel, GE ;
WalterShea, EA .
AGRONOMY JOURNAL, 1996, 88 (01) :1-5
[8]   Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density [J].
Broge, NH ;
Leblanc, E .
REMOTE SENSING OF ENVIRONMENT, 2001, 76 (02) :156-172
[9]   Comparison of principal component inversion with VI-empirical approach for LAI estimation using simulated reflectance data [J].
Chaurasia, S ;
Dadhwal, VK .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2004, 25 (14) :2881-2887
[10]  
Cramer W., 1999, Global Change Biology, V5