Carbon-based ocean productivity and phytoplankton physiology from space

被引:844
作者
Behrenfeld, MJ
Boss, E
Siegel, DA
Shea, DM
机构
[1] NASA, Sci Applicat Int Corp, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[2] Univ Maine, Sch Marine Sci, Orono, ME 04469 USA
[3] Univ Calif Santa Barbara, Inst Computat Earth Syst Sci, Santa Barbara, CA 93106 USA
关键词
D O I
10.1029/2004GB002299
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ocean biogeochemical and ecosystem processes are linked by net primary production (NPP) in the ocean's surface layer, where inorganic carbon is fixed by photosynthetic processes. Determinations of NPP are necessarily a function of phytoplankton biomass and its physiological status, but the estimation of these two terms from space has remained an elusive target. Here we present new satellite ocean color observations of phytoplankton carbon (C) and chlorophyll (Chl) biomass and show that derived Chl:C ratios closely follow anticipated physiological dependencies on light, nutrients, and temperature. With this new information, global estimates of phytoplankton growth rates (mu) and carbon-based NPP are made for the first time. Compared to an earlier chlorophyll-based approach, our carbon-based values are considerably higher in tropical oceans, show greater seasonality at middle and high latitudes, and illustrate important differences in the formation and demise of regional algal blooms. This fusion of emerging concepts from the phycological and remote sensing disciplines has the potential to fundamentally change how we model and observe carbon cycling in the global oceans.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 60 条
[1]   Oceanic primary production .2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll [J].
Antoine, D ;
Andre, JM ;
Morel, A .
GLOBAL BIOGEOCHEMICAL CYCLES, 1996, 10 (01) :57-69
[2]   Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration [J].
Babin, M ;
Morel, A ;
Fournier-Sicre, V ;
Fell, F ;
Stramski, D .
LIMNOLOGY AND OCEANOGRAPHY, 2003, 48 (02) :843-859
[3]   HYPERBOLIC DISTRIBUTION OF PARTICLE SIZES [J].
BADER, H .
JOURNAL OF GEOPHYSICAL RESEARCH, 1970, 75 (15) :2822-+
[4]   RATES OF PHYTOPLANKTON CELL-DIVISION IN THE FIELD AND IN IRON ENRICHMENT EXPERIMENTS [J].
BANSE, K .
LIMNOLOGY AND OCEANOGRAPHY, 1991, 36 (08) :1886-1898
[5]   Photosynthetic rates derived from satellite-based chlorophyll concentration [J].
Behrenfeld, MJ ;
Falkowski, PG .
LIMNOLOGY AND OCEANOGRAPHY, 1997, 42 (01) :1-20
[6]   The beam attenuation to chlorophyll ratio: an optical index of phytoplankton physiology in the surface ocean? [J].
Behrenfeld, MJ ;
Boss, E .
DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 2003, 50 (12) :1537-1549
[7]   A consumer's guide to phytoplankton primary productivity models [J].
Behrenfeld, MJ ;
Falkowski, PG .
LIMNOLOGY AND OCEANOGRAPHY, 1997, 42 (07) :1479-1491
[8]   Photoacclimation and nutrient-based model of light-saturated photosynthesis for quantifying oceanic primary production [J].
Behrenfeld, MJ ;
Marañón, E ;
Siegel, DA ;
Hooker, SB .
MARINE ECOLOGY PROGRESS SERIES, 2002, 228 :103-117
[9]   Biospheric primary production during an ENSO transition [J].
Behrenfeld, MJ ;
Randerson, JT ;
McClain, CR ;
Feldman, GC ;
Los, SO ;
Tucker, CJ ;
Falkowski, PG ;
Field, CB ;
Frouin, R ;
Esaias, WE ;
Kolber, DD ;
Pollack, NH .
SCIENCE, 2001, 291 (5513) :2594-2597
[10]   Transmissometer measurement of POC [J].
Bishop, JKB .
DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 1999, 46 (02) :353-369