A fast method to determine co-occurrence texture features

被引:70
作者
Clausi, DA [1 ]
Jernigan, ME
机构
[1] Univ Calgary, Dept Geomant Engn, Calgary, AB T3C 351, Canada
[2] Univ Waterloo, Dept Syst Design Engn, Calgary, AB N2L 3G1, Canada
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 1998年 / 36卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1109/36.655338
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A critical shortcoming of determining texture features derived from grey-level co-occurrence matrices (GLCM's) is the excessive computational burden, This paper describes the implementation of a linked-list algorithm to determine co-occurrence texture features far more efficiently. Behavior of common co-occurrence texture features across difference grey level quantizations is investigated.
引用
收藏
页码:298 / 300
页数:3
相关论文
共 7 条
[1]   AN INVESTIGATION OF THE TEXTURAL CHARACTERISTICS ASSOCIATED WITH GRAY-LEVEL COOCCURRENCE MATRIX STATISTICAL PARAMETERS [J].
BARALDI, A ;
PARMIGGIANI, F .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1995, 33 (02) :293-304
[2]  
BARBER DG, 1991, PHOTOGRAMM ENG REM S, V57, P385
[3]  
CLAUSI DA, 1996, THESIS U WATERLOO WA
[4]  
Duff IS, 1986, DIRECT METHODS SPARS
[5]  
Hart P.E., 1973, Pattern recognition and scene analysis
[6]  
HIROSE T, 1993, REPORT EVALUATION IC