A combinatorial optimization scheme for parameter structure identification in ground water modeling

被引:48
作者
Tsai, FTC [1 ]
Sun, NZ [1 ]
Yeh, WWG [1 ]
机构
[1] Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90095 USA
关键词
D O I
10.1111/j.1745-6584.2003.tb02579.x
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This research develops a methodology for parameter structure identification in ground water modeling. For a given set of observations, parameter structure identification seeks to identify the parameter dimension, its corresponding parameter pattern and values. Voronoi tessellation is used to parameterize the unknown distributed parameter into a number of zones. Accordingly, the parameter structure identification problem is equivalent to finding the number and locations as well as the values of the basis points associated with the Voronoi tessellation. A genetic algorithm (GA) is allied with a grid search method and a quasi-Newton algorithm to solve the inverse problem. GA is first used to search for the near-optimal parameter pattern and values. Next, a grid search method and a quasi-Newton algorithm iteratively improve the GA's estimates. Sensitivities of state variables to parameters are calculated by the sensitivity-equation method. MODFLOW and MT3DMS are employed to solve the coupled flow and transport model as well as the derived sensitivity equations. The optimal parameter dimension is determined using criteria based on parameter uncertainty and parameter structure discrimination. Numerical experiments are conducted to demonstrate the proposed methodology, in which the true transmissivity field is characterized by either a continuous distribution or a distribution that can be characterized by zones. We conclude that the optimized transmissivity zones capture the trend and distribution of the true transmissivity field.
引用
收藏
页码:156 / 169
页数:14
相关论文
共 62 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]   Two-dimensional advective transport in ground-water flow parameter estimation [J].
Anderman, ER ;
Hill, MC ;
Poeter, EP .
GROUND WATER, 1996, 34 (06) :1001-1009
[3]  
[Anonymous], 1989, GENETIC ALGORITHM SE
[4]  
[Anonymous], 1999, DOCUMENTATION USERS
[5]   AUTOMATIC PARAMETER-ESTIMATION APPLIED ON A GROUNDWATER MODEL - THE PROBLEM OF STRUCTURE IDENTIFICATION [J].
ASCHENBRENNER, F ;
OSTIN, A .
ENVIRONMENTAL GEOLOGY, 1995, 25 (03) :205-210
[6]  
Bear J., 1979, HYDRAULICS GROUNDWAT
[7]   COMPUTING DIRICHLET TESSELLATIONS [J].
BOWYER, A .
COMPUTER JOURNAL, 1981, 24 (02) :162-166
[8]  
BYRD RH, 1994, NAM08 NW U DEP EL EN
[9]   ESTIMATION OF AQUIFER PARAMETERS UNDER TRANSIENT AND STEADY-STATE CONDITIONS .3. APPLICATION TO SYNTHETIC AND FIELD DATA [J].
CARRERA, J ;
NEUMAN, SP .
WATER RESOURCES RESEARCH, 1986, 22 (02) :228-242
[10]   Chemical laser modeling with genetic algorithms [J].
Carroll, DL .
AIAA JOURNAL, 1996, 34 (02) :338-346