Green function Monte Carlo with stochastic reconfiguration

被引:162
作者
Sorella, S
机构
[1] Ist Nazl Fis Mat, I-34013 Trieste, Italy
[2] Int Sch Adv Studies, I-34013 Trieste, Italy
关键词
D O I
10.1103/PhysRevLett.80.4558
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new method for the stabilization of the sign problem in the Green function Monte Carlo technique is proposed. The method is devised for real lattice Hamiltonians and is based on an iterative "stochastic reconfiguration" scheme which introduces some bias but allows a stable simulation with constant sign. The systematic reduction of this bias is possible in principle. The method is applied to the frustrated J(1) - J(2) Heisenberg model, and tested against exact diagonalization data. Evidence of a finite spin gap for J(2)/J(1) > similar to 0.4 is found in the thermodynamic limit.
引用
收藏
页码:4558 / 4561
页数:4
相关论文
共 9 条
[1]  
CALANDRA M, IN PRESS
[2]   PHASE-DIAGRAM OF THE FRUSTRATED SPIN-1/2 HEISENBERG-ANTIFERROMAGNET IN 2 DIMENSIONS [J].
DAGOTTO, E ;
MOREO, A .
PHYSICAL REVIEW LETTERS, 1989, 63 (19) :2148-2151
[3]   Spin-wave wave function for quantum spin models [J].
Franjic, F ;
Sorella, S .
PROGRESS OF THEORETICAL PHYSICS, 1997, 97 (03) :399-406
[4]   REWEIGHTING METHOD FOR QUANTUM MONTE-CARLO SIMULATIONS WITH THE NEGATIVE-SIGN PROBLEM [J].
NAKAMURA, T ;
HATANO, N ;
NISHIMORI, H .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1992, 61 (10) :3494-3502
[5]  
RUNGE K, 1992, PHYS REV B, V45, P7223
[6]  
Schulz HJ, 1996, J PHYS I, V6, P675, DOI 10.1051/jp1:1996236
[7]   PROOF FOR AN UPPER BOUND IN FIXED-NODE MONTE-CARLO FOR LATTICE FERMIONS [J].
TENHAAF, DFB ;
VANBEMMEL, HJM ;
VANLEEUWEN, JMJ ;
VANSAARLOOS, W ;
CEPERLEY, DM .
PHYSICAL REVIEW B, 1995, 51 (19) :13039-13045
[8]   GROUND-STATE CORRELATIONS OF QUANTUM ANTIFERROMAGNETS - A GREEN-FUNCTION MONTE-CARLO STUDY [J].
TRIVEDI, N ;
CEPERLEY, DM .
PHYSICAL REVIEW B, 1990, 41 (07) :4552-4569
[9]   FIXED-NODE QUANTUM MONTE-CARLO METHOD FOR LATTICE FERMIONS [J].
VANBEMMEL, HJM ;
TENHAAF, DFB ;
VANSAARLOOS, W ;
VANLEEUWEN, JMJ ;
AN, G .
PHYSICAL REVIEW LETTERS, 1994, 72 (15) :2442-2445