Sylvester matrix equation for matrix pencils

被引:9
作者
Beitia, MA [1 ]
Gracia, JM [1 ]
机构
[1] UNIV BASQUE COUNTRY, FAC FARM, DEPT MATEMAT APLICADA & EIO, E-01080 VITORIA, SPAIN
关键词
D O I
10.1016/0024-3795(94)00044-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a homogeneous linear matrix equation system related to the strict equivalence of matrix pencils. We obtain the dimension of the vector space of its solutions in terms of the invariants of the strict equivalence. We give a characterization of the strict equivalence of matrix pencils by rank tests, and we extend Both's criterion for the corresponding nonhomogeneous system.
引用
收藏
页码:155 / 197
页数:43
相关论文
共 18 条
[1]  
[Anonymous], THEORIE MATRICES
[2]  
[Anonymous], THEORIE MATRICES
[3]  
Beitia M. A., 1992, LINEAR MULTILINEAR A, V31, P93
[4]   THE NUMBER OF LINEARLY INDEPENDENT MATRICES-X, WHICH COMMUTATE WITH A DETERMINED MATRIX-A, EXPRESSED IN WEYR CHARACTERISTICS [J].
BRANDENBUSCH, W .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1980, 60 (04) :205-205
[5]  
De Hoyos I., 1990, THESIS U PAIS VASCO
[6]   POINTS OF CONTINUITY OF THE KRONECKER CANONICAL FORM [J].
DEHOYOS, I .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) :278-300
[7]  
FLNADERS H, 1977, SIAM J APPL MATH, V32, P707
[8]  
Friedland S., 1980, LECT APPL MATH, V18, P43
[9]  
FROBENIUS G, 1910, BERLIN SITZB, P3
[10]  
Gohberg I., 1986, INVARIANT SUBSPACES