Quantum critical transport, duality, and M theory

被引:280
作者
Herzog, Christopher P. [1 ]
Kovtun, Pavel
Sachdev, Subir
Son, Dam Thanh
机构
[1] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[2] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[3] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[4] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA
来源
PHYSICAL REVIEW D | 2007年 / 75卷 / 08期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevD.75.085020
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider charge transport properties of 2+1 dimensional conformal field theories at nonzero temperature. For theories with only Abelian U(1) charges, we describe the action of particle-vortex duality on the hydrodynamic-to-collisionless crossover function: this leads to powerful functional constraints for self-dual theories. For N=8 supersymmetric, SU(N) Yang-Mills theory at the conformal fixed point, exact hydrodynamic-to-collisionless crossover functions of the SO(8) R-currents can be obtained in the large N limit by applying the anti-de Sitter/conformal field theory (AdS/CFT) correspondence to M theory. In the gravity theory, fluctuating currents are mapped to fluctuating gauge fields in the background of a black hole in 3+1 dimensional anti-de Sitter space. The electromagnetic self-duality of the 3+1 dimensional theory implies that the correlators of the R-currents obey a functional constraint similar to that found from particle-vortex duality in 2+1 dimensional Abelian theories. Thus the 2+1 dimensional, superconformal Yang Mills theory obeys a "holographic self-duality" in the large N limit, and perhaps more generally.
引用
收藏
页数:20
相关论文
共 79 条
[1]   Aspects of N=2 supersymmetric gauge theories in three dimensions [J].
Aharony, O ;
Hanany, A ;
Intriligator, K ;
Seiberg, N ;
Strassler, MJ .
NUCLEAR PHYSICS B, 1997, 499 (1-2) :67-99
[2]   Large N field theories, string theory and gravity [J].
Aharony, O ;
Gubser, SS ;
Maldacena, J ;
Ooguri, H ;
Oz, Y .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 323 (3-4) :183-386
[3]  
[Anonymous], 2000, QUANTUM PHASE TRANSI, DOI [DOI 10.1017/CBO9780511622540, DOI 10.1017/CBO9780511973765]
[4]   Vortices with fractional flux in two-gap superconductors and in extended Faddeev model [J].
Babaev, E .
PHYSICAL REVIEW LETTERS, 2002, 89 (06)
[5]   Putting competing orders in their place near the Mott transition [J].
Balents, L ;
Bartosch, L ;
Burkov, A ;
Sachdev, S ;
Sengupta, K .
PHYSICAL REVIEW B, 2005, 71 (14)
[6]   Hydrodynamics of Sakai-Sugimoto model in the quenched approximation [J].
Benincasa, Paolo ;
Buchel, Alex .
PHYSICS LETTERS B, 2006, 640 (03) :108-115
[7]   Baryon spectra and AdS/CFT correspondence [J].
Berenstein, D ;
Herzog, CP ;
Klebanov, IR .
JOURNAL OF HIGH ENERGY PHYSICS, 2002, (06) :1123-1145
[8]  
BHASEEN MJ, CONDMAT0610687
[9]   N=2*hydrodynamics [J].
Buchel, A .
NUCLEAR PHYSICS B, 2005, 708 :451-466
[10]   Particle-vortex duality and the modular group: Applications to the quantum Hall effect and other two-dimensional systems [J].
Burgess, CP ;
Dolan, BP .
PHYSICAL REVIEW B, 2001, 63 (15)