Artificially recruited TATA-binding protein fails to remodel chromatin and does not activate three promoters that require chromatin remodeling

被引:27
作者
Ryan, MP
Stafford, GA
Yu, LN
Morse, RH [1 ]
机构
[1] New York State Dept Hlth, Wadsworth Ctr, Mol Genet Program, Albany, NY 12201 USA
[2] SUNY Albany, Sch Publ Hlth, Albany, NY 12201 USA
关键词
D O I
10.1128/MCB.20.16.5847-5857.2000
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transcriptional activators are believed to work in part by recruiting general transcription factors, such as TATA-binding protein (TBP) and the RNA polymerase II holoenzyme. Activation domains also contribute to remodeling of chromatin in vivo. To determine whether these two activities represent distinct functions of activation domains, we have examined transcriptional activation and chromatin remodeling accompanying artificial recruitment of TBP in yeast (Saccharomyces cerevisiae), We measured transcription of reporter genes with defined chromatin structure by artificial recruitment of TBP and found that a reporter gene whose TATA element was relatively accessible could be activated by artificially recruited TBP, whereas two promoters, GAL10 and CHA1, that have accessible activator binding sites, but nucleosomal TATA elements, could not. A third reporter gene containing the HIS4 promoter could be activated by GAL4-TBP only when a RAP1 binding site was present, although RAP1 alone could not activate the reporter, suggesting that RAP1 was needed to open the chromatin structure to allow activation. Consistent with this interpretation, artificially recruited TBP was unable to perturb nucleosome positioning via a nucleosomal binding site, in contrast to a true activator such as GAL4, or to perturb the TATA-containing nucleosome at the CHA1 promoter. Finally, we show that activation of the GAL10 promoter by GAL4, which requires chromatin remodeling, can occur even in swi gcn5 yeast, implying that remodeling pathways independent of GCN5, the SWI-SNF complex, and TFIID can operate during transcriptional activation in vivo.
引用
收藏
页码:5847 / 5857
页数:11
相关论文
共 84 条
[1]   REMOVAL OF POSITIONED NUCLEOSOMES FROM THE YEAST PHO5 PROMOTER UPON PHO5 INDUCTION RELEASES ADDITIONAL UPSTREAM ACTIVATING DNA ELEMENTS [J].
ALMER, A ;
RUDOLPH, H ;
HINNEN, A ;
HORZ, W .
EMBO JOURNAL, 1986, 5 (10) :2689-2696
[2]   TRANSCRIPTION FACTOR LOADING ON THE MMTV PROMOTER - A BIMODAL MECHANISM FOR PROMOTER ACTIVATION [J].
ARCHER, TK ;
LEFEBVRE, P ;
WOLFORD, RG ;
HAGER, GL .
SCIENCE, 1992, 255 (5051) :1573-1576
[3]   MOT1, A GLOBAL REPRESSOR OF RNA-POLYMERASE-II TRANSCRIPTION, INHIBITS TBP BINDING TO DNA BY AN ATP-DEPENDENT MECHANISM [J].
AUBLE, DT ;
HANSEN, KE ;
MUELLER, CGF ;
LANE, WS ;
THORNER, J ;
HAHN, S .
GENES & DEVELOPMENT, 1994, 8 (16) :1920-1934
[4]   GAL4 DISRUPTS A REPRESSING NUCLEOSOME DURING ACTIVATION OF GAL1 TRANSCRIPTION INVIVO [J].
AXELROD, JD ;
REAGAN, MS ;
MAJORS, J .
GENES & DEVELOPMENT, 1993, 7 (05) :857-869
[5]  
Balasubramanian B, 1999, MOL CELL BIOL, V19, P2977
[6]   CONTACT WITH A COMPONENT OF THE POLYMERASE-II HOLOENZYME SUFFICES FOR GENE ACTIVATION [J].
BARBERIS, A ;
PEARLBERG, J ;
SIMKOVICH, N ;
FARRELL, S ;
REINAGEL, P ;
BAMDAD, C ;
SIGAL, G ;
PTASHNE, M .
CELL, 1995, 81 (03) :359-368
[7]   Continuous and widespread roles for the Swi-Snf complex in transcription [J].
Biggar, SR ;
Crabtree, GR .
EMBO JOURNAL, 1999, 18 (08) :2254-2264
[8]  
Brachmann CB, 1998, YEAST, V14, P115
[9]   CHROMATIN TRANSITIONS DURING ACTIVATION AND REPRESSION OF GALACTOSE-REGULATED GENES IN YEAST [J].
CAVALLI, G ;
THOMA, F .
EMBO JOURNAL, 1993, 12 (12) :4603-4613
[10]   CONNECTING A PROMOTER-BOUND PROTEIN TO TBP BYPASSES THE NEED FOR A TRANSCRIPTIONAL ACTIVATION DOMAIN [J].
CHATTERJEE, S ;
STRUHL, K .
NATURE, 1995, 374 (6525) :820-822