Light-harvesting complex 1 stabilizes P+QB- charge separation in reaction centers of Rhodobacter sphaeroides

被引:33
作者
Francia, F [1 ]
Dezi, M
Rebecchi, A
Mallardi, A
Palazzo, G
Melandri, BA
Venturoli, G
机构
[1] Univ Bologna, Lab Biochim & Biofis, Dipartimento Biol, I-40126 Bologna, Italy
[2] CNR, Ist Proc ChimicoFis, I-70126 Bari, Italy
[3] Univ Bari, Dipartimento Chim, I-70126 Bari, Italy
[4] Ist Nazl Fis Mat, UdR Bologna, I-40127 Bologna, Italy
关键词
D O I
10.1021/bi048629s
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The kinetics of charge recombination following photoexcitation by a laser pulse have been analyzed in the reaction center-light harvesting complex 1 (RC-LH1) purified from the photosynthetic bacterium Rhodobacter sphaeroides. In RC-LH1 core complexes isolated from photosynthetically grown cells P(divided by)Q(B)(-) recombines with an average rate constant, <k> approximate to 0.3 s(-1), more than three times smaller than that measured in RC deprived of the LH1 (<k> approximate to 1 s(-1)). A comparable, slowed recombination kinetics is observed in RC-LH1 complexes purified from a pufX-deleted strain. Slowing of the charge recombination kinetics is even more pronounced in RC-LH1 complexes isolated from wild-type semiaerobically grown cells (<k> approximate to 0.2 s(-1)). Since the kinetics of P(+)Q(A)(-) recombination is unaffected by the presence of the antenna, the P+Q(B)(-) state appears to be energetically stabilized in core complexes. Determinations of the ubiquinone-10 (UQ(10)) complement associated with the purified RC-LH1 complexes always yield UQ(10)/ RC ratios larger than 10. These quinone molecules are functionally coupled to the RC-LH1 complex, as judged from the extent of exogenous cytochrome c(2) rapidly oxidized under continuous light excitation. Analysis of P(divided by)Q(B)(-) recombination, based on a kinetic model which considers fast quinone equilibrium at the Q(B) binding site, indicates that the slowing down of charge recombination kinetics observed in RC-LH1 complexes cannot be explained solely by a quinone concentration effect and suggests that stabilization of the light-induced charge separation is predominantly due to interaction of the QB site with the LH1 complex. The high UQ(10) complements detected in RC-LH1 core complexes, but not in purified light harvesting complex 2 and in RC, are proposed to reflect an in vivo heterogeneity in the distribution of the quinone pool within the chromatophore bilayer.
引用
收藏
页码:14199 / 14210
页数:12
相关论文
共 69 条
[1]   Free energy dependence of the direct charge recombination from the primary and secondary quinones in reaction centers from Rhodobacter sphaeroides [J].
Allen, JP ;
Williams, JC ;
Graige, MS ;
Paddock, ML ;
Labahn, A ;
Feher, G ;
Okamura, MY .
PHOTOSYNTHESIS RESEARCH, 1998, 55 (2-3) :227-233
[2]   STRUCTURE OF THE REACTION CENTER FROM RHODOBACTER-SPHAEROIDES R-26 - THE COFACTORS .1. [J].
ALLEN, JP ;
FEHER, G ;
YEATES, TO ;
KOMIYA, H ;
REES, DC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (16) :5730-5734
[3]   STRUCTURE OF THE REACTION CENTER FROM RHODOBACTER-SPHAEROIDES R-26 - THE PROTEIN SUBUNITS [J].
ALLEN, JP ;
FEHER, G ;
YEATES, TO ;
KOMIYA, H ;
REES, DC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (17) :6162-6166
[4]   STRUCTURAL HOMOLOGY OF REACTION CENTERS FROM RHODOPSEUDOMONAS-SPHAEROIDES AND RHODOPSEUDOMONAS-VIRIDIS AS DETERMINED BY X-RAY-DIFFRACTION [J].
ALLEN, JP ;
FEHER, G ;
YEATES, TO ;
REES, DC ;
DEISENHOFER, J ;
MICHEL, H ;
HUBER, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (22) :8589-8593
[5]  
[Anonymous], METHOD ENZYMOL
[7]  
Baccarini-Melandri A., 1971, Methods in Enzymology, P556, DOI [10.1016/S0076-6879(71)23126-8, DOI 10.1016/S0076-6879(71)23126-8]
[8]   ROLE OF THE PUFX PROTEIN IN PHOTOSYNTHETIC GROWTH OF RHODOBACTER-SPHAEROIDES .2. PUFX IS REQUIRED FOR EFFICIENT UBIQUINONE UBIQUINOL EXCHANGE BETWEEN THE REACTION-CENTER Q(B) SITE AND THE CYTOCHROME BC(1) COMPLEX [J].
BARZ, WP ;
VERMEGLIO, A ;
FRANCIA, F ;
VENTUROLI, G ;
MELANDRI, BA ;
OESTERHELT, D .
BIOCHEMISTRY, 1995, 34 (46) :15248-15258
[9]   RESOLVED DIFFERENCE SPECTRA OF REDOX CENTERS INVOLVED IN PHOTOSYNTHETIC ELECTRON FLOW IN RHODOPSEUDOMONAS-CAPSULATA AND RHODOPSEUDOMONAS-SPHAEROIDES [J].
BOWYER, JR ;
MEINHARDT, SW ;
TIERNEY, GV ;
CROFTS, AR .
BIOCHIMICA ET BIOPHYSICA ACTA, 1981, 635 (01) :167-186
[10]   Interactions between lipids and bacterial reaction centers determined by protein crystallography [J].
Camara-Artigas, A ;
Brune, D ;
Allen, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (17) :11055-11060