Classification of scene photographs from local orientations features

被引:31
作者
Guérin-Dugué, A [1 ]
Oliva, A [1 ]
机构
[1] Inst Natl Polytech Grenoble, LIS, F-38031 Grenoble, France
关键词
D O I
10.1016/S0167-8655(00)00074-X
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Natural image understanding is a very active and promising research domain both in psychology for visual perception modelling and in computer science for image retrieval. In this study, we investigate the efficiency of orientation distributions over the whale image in the scale space. The global distribution of the local dominant orientations (LDO) appears to be a powerful feature for discriminating between four semantic categories of real world scenes (indoor scenes, urban scenes, open landscapes, closed landscapes). The selected optimal scale is compatible with psychological experiments and classification performances show that a global representation of dominant orientations is a simple, efficient and compact method for scene recognition. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1135 / 1140
页数:6
相关论文
共 17 条
  • [1] [Anonymous], 1998, IEEE INT WORKSH CONT
  • [2] Faloutsos C., 1994, Journal of Intelligent Information Systems: Integrating Artificial Intelligence and Database Technologies, V3, P231, DOI 10.1007/BF00962238
  • [3] THE DESIGN AND USE OF STEERABLE FILTERS
    FREEMAN, WT
    ADELSON, EH
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1991, 13 (09) : 891 - 906
  • [4] GORKANI MM, 1994, IEEE C PATT REC OCT
  • [5] GUERINDUGUE A, 1999, CBMI 99
  • [6] GUERINDUGUE A, 1999, SCIA 99
  • [7] HAMPAPUR A, 1997, SPIE STORAGE RETRIEV, V5
  • [8] LINDEBERG T, 1994, LINEAR SCALE SPACE M
  • [9] LIPSON P, 1997, IEEE INT C COMP VIS
  • [10] MA WY, 1997, INT C IM PROC SANT B, V1