Automated segmentation of multispectral brain MR images

被引:50
作者
Andersen, AH
Zhang, ZM
Avison, MJ
Gash, DM
机构
[1] Univ Kentucky, Med Ctr, Magnet Resonance Imaging & Spect Ctr, Lexington, KY 40536 USA
[2] Univ Kentucky, Med Ctr, Dept Anat & Neurobiol, Lexington, KY 40536 USA
[3] Univ Kentucky, Med Ctr, Dept Neurol, Lexington, KY 40536 USA
[4] Univ Kentucky, Med Ctr, Dept Biochem, Lexington, KY 40536 USA
关键词
magnetic; resonance; imaging; computerized; automated; multispectral; segmentation;
D O I
10.1016/S0165-0270(02)00273-X
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This work presents a robust and comprehensive approach for the in vivo automated segmentation and quantitative tissue volume measurement of normal brain composition from multispectral magnetic resonance imaging (MRI) data. Statistical pattern recognition methods based on a finite mixture model are used to partition the intracranial volume into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) spaces. A masking algorithm initially extracts the brain volume from surrounding extrameningeal tissue. Radio frequency (RF) field inhomogeneity effects in the images are then removed using a recursive method that adapts to the intrinsic local tissue contrast. Our technique supports heterogeneous data with multispectral MR images of different contrast and intensity weighting acquired at varying spatial resolution and orientation. The proposed image segmentation methods have been tested using multispectral T1-, proton density-, and T2-weighted MRI data from young and aged non-human primates as well as from human subjects. (C) 2002 Published by Elsevier Science B.V.
引用
收藏
页码:13 / 23
页数:11
相关论文
共 26 条
[1]   Reproducibility of intracranial volume measurement by unsupervised multispectral brain segmentation [J].
Alfano, B ;
Quarantelli, M ;
Brunetti, A ;
Larobina, M ;
Covelli, EM ;
Tedeschi, E ;
Salvatore, M .
MAGNETIC RESONANCE IN MEDICINE, 1998, 39 (03) :497-499
[2]   Unsupervised, automated segmentation of the normal brain using a multispectral relaxometric magnetic resonance approach [J].
Alfano, B ;
Brunetti, A ;
Covelli, EM ;
Quarantelli, M ;
Panico, MR ;
Ciarmiello, A ;
Salvatore, M .
MAGNETIC RESONANCE IN MEDICINE, 1997, 37 (01) :84-93
[3]   Age-associated changes in rhesus CNS composition identified by MRI [J].
Andersen, AH ;
Zhang, ZM ;
Zhang, M ;
Gash, DM ;
Avison, MJ .
BRAIN RESEARCH, 1999, 829 (1-2) :90-98
[4]   Multimodal image coregistration and partitioning - A unified framework [J].
Ashburner, J ;
Friston, K .
NEUROIMAGE, 1997, 6 (03) :209-217
[5]   REVIEW OF MR IMAGE SEGMENTATION TECHNIQUES USING PATTERN-RECOGNITION [J].
BEZDEK, JC ;
HALL, LO ;
CLARKE, LP .
MEDICAL PHYSICS, 1993, 20 (04) :1033-1048
[6]   MRI SEGMENTATION - METHODS AND APPLICATIONS [J].
CLARKE, LP ;
VELTHUIZEN, RP ;
CAMACHO, MA ;
HEINE, JJ ;
VAIDYANATHAN, M ;
HALL, LO ;
THATCHER, RW ;
SILBIGER, ML .
MAGNETIC RESONANCE IMAGING, 1995, 13 (03) :343-368
[7]   3-DIMENSIONAL SEGMENTATION OF MR IMAGES OF THE HEAD USING PROBABILITY AND CONNECTIVITY [J].
CLINE, HE ;
LORENSEN, WE ;
KIKINIS, R ;
JOLESZ, F .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1990, 14 (06) :1037-1045
[8]   AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages [J].
Cox, RW .
COMPUTERS AND BIOMEDICAL RESEARCH, 1996, 29 (03) :162-173
[9]  
Fukunaga K., 1972, Introduction to statistical pattern recognition
[10]   METHODS FOR MEASURING BRAIN MORPHOLOGIC FEATURES ON MAGNETIC-RESONANCE IMAGES - VALIDATION AND NORMAL AGING [J].
JERNIGAN, TL ;
PRESS, GA ;
HESSELINK, JR .
ARCHIVES OF NEUROLOGY, 1990, 47 (01) :27-32