Engineering starch for increased quantity and quality

被引:147
作者
Slattery, CJ [1 ]
Kavakli, IH [1 ]
Okita, TW [1 ]
机构
[1] Washington State Univ, Inst Biol Chem, Pullman, WA USA
关键词
D O I
10.1016/S1360-1385(00)01657-5
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The characterization and production of starch variants from mutation studies and transgene technology has been invaluable for our understanding of the synthesis of the starch granule. The knowledge gained has allowed for genetic manipulation of the starch biosynthetic pathway in plants. This in vivo approach can be used to generate novel starches and diminishes the need for post-harvest chemically and enzymatically treated starches. Thus, the modification of the starch biosynthetic pathway is a plausible means by which starches with novel properties and applications can be created.
引用
收藏
页码:291 / 298
页数:8
相关论文
共 57 条
[1]  
ApRees T, 1995, CUR TOP PL, V14, P143
[2]   Hysteresis during stress-induced variant rearrangement [J].
Ball, JM ;
Chu, C ;
James, RD .
JOURNAL DE PHYSIQUE IV, 1995, 5 (C8) :245-251
[3]   From glycogen to amylopectin: A model for the biogenesis of the plant starch granule [J].
Ball, S ;
Guan, HP ;
James, M ;
Myers, A ;
Keeling, P ;
Mouille, G ;
Buleon, A ;
Colonna, P ;
Preiss, J .
CELL, 1996, 86 (03) :349-352
[4]   THE WRINKLED-SEED CHARACTER OF PEA DESCRIBED BY MENDEL IS CAUSED BY A TRANSPOSON-LIKE INSERTION IN A GENE ENCODING STARCH-BRANCHING ENZYME [J].
BHATTACHARYYA, MK ;
SMITH, AM ;
ELLIS, THN ;
HEDLEY, C ;
MARTIN, C .
CELL, 1990, 60 (01) :115-122
[5]   EVIDENCE FOR INDEPENDENT GENETIC-CONTROL OF THE MULTIPLE FORMS OF MAIZE ENDOSPERM BRANCHING ENZYMES AND STARCH SYNTHASES [J].
BOYER, CD ;
PREISS, J .
PLANT PHYSIOLOGY, 1981, 67 (06) :1141-1145
[6]   STARCH BRANCHING ENZYMES BELONGING TO DISTINCT ENZYME FAMILIES ARE DIFFERENTIALLY EXPRESSED DURING PEA EMBRYO DEVELOPMENT [J].
BURTON, RA ;
BEWLEY, JD ;
SMITH, AM ;
BHATTACHARYYA, MK ;
TATGE, H ;
RING, S ;
BULL, V ;
HAMILTON, WDO ;
MARTIN, C .
PLANT JOURNAL, 1995, 7 (01) :3-15
[7]   The relationship between the rate of starch synthesis, the adenosine 5′-diphosphoglucose concentration and the amylose content of starch in developing pea embryos [J].
Clarke, BR ;
Denyer, K ;
Jenner, CF ;
Smith, AM .
PLANTA, 1999, 209 (03) :324-329
[8]   Genetic and biochemical evidence for the involvement of α-1,4 glucanotransferases in amylopectin synthesis [J].
Colleoni, C ;
Dauvillée, D ;
Mouille, G ;
Buléon, A ;
Gallant, D ;
Bouchet, B ;
Morell, M ;
Samuel, M ;
Delrue, B ;
d'Hulst, C ;
Bliard, C ;
Nuzillard, JM ;
Ball, S .
PLANT PHYSIOLOGY, 1999, 120 (04) :993-1003
[9]   Mutations in the gene encoding starch synthase II profoundly alter amylopectin structure in pea embryos [J].
Craig, J ;
Lloyd, JR ;
Tomlinson, K ;
Barber, L ;
Edwards, A ;
Wang, TL ;
Martin, C ;
Hedley, CL ;
Smith, AM .
PLANT CELL, 1998, 10 (03) :413-426
[10]   The major form of ADP-glucose pyrophosphorylase in maize endosperm is extra-plastidial [J].
Denyer, K ;
Dunlap, F ;
Thorbjornsen, T ;
Keeling, P ;
Smith, AM .
PLANT PHYSIOLOGY, 1996, 112 (02) :779-785