Sharp integrability for Brownian motion in parabola-shaped regions

被引:8
作者
Bañuelos, R [1 ]
Carroll, T
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47906 USA
[2] Natl Univ Ireland, Dept Math, Cork, Ireland
基金
美国国家科学基金会;
关键词
harmonic measure; Brownian motion; conformal mapping;
D O I
10.1016/j.jfa.2004.05.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the sharp order of integrability of the exit position of Brownian motion from the planar domains P-alpha = {(x, y) is an element of R x R: x > 0, \y\ < Axalpha}, 0 < alpha < 1. Together with some simple good-lambda type arguments, this implies the order of integrability for the exit time of these domains; a result first proved for alpha = 1/2 by Banuelos et al. (Ann. Probab. 29 (2001) 882) and for general alpha by Li (Ann. Probab. 31 (2003) 1078). A sharp version of this result is also proved in higher dimensions. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:219 / 253
页数:35
相关论文
共 16 条
[1]  
Bañuelos R, 2001, ANN PROBAB, V29, P882
[2]   EXIT TIMES OF BROWNIAN-MOTION, HARMONIC MAJORIZATION, AND HARDY SPACES [J].
BURKHOLDER, DL .
ADVANCES IN MATHEMATICS, 1977, 26 (02) :182-205
[3]  
Carroll T., 2004, COMPUTATIONAL METHOD, V4, P111
[4]  
DEBLASSIE D, 2003, BROWNIAN MOTION TWIS
[5]  
ESSEN M, 1984, ANN ACAD SCI FENN-M, V9, P107
[6]   ESTIMATES OF HARMONIC MEASURES [J].
HALISTE, K .
ARKIV FOR MATEMATIK, 1965, 6 (01) :1-&
[7]  
Li WBV, 2003, ANN PROBAB, V31, P1078
[8]  
Lifshits M, 2002, BERNOULLI, V8, P745
[9]  
OGERS LCG, 1987, MARKOV PROCESSES MAR, V2
[10]  
Pommerenke C, 1975, UNIVALENT FUNCTIONS