CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios:: Implications for past, present, and future ocean biogeochemistry

被引:360
作者
Hutchins, D. A.
Fu, F.-X.
Zhang, Y.
Warner, M. E.
Feng, Y.
Portune, K.
Bernhardt, P. W.
Mulholland, M. R.
机构
[1] Univ So Calif, Dept Biol Sci, Los Angeles, CA 90089 USA
[2] Univ Delaware, Coll Marine & Earth Studies, Lewes, DE 19958 USA
[3] Old Dominion Univ, Dept Ocean Earth & Atmospher Sci, Norfolk, VA 23529 USA
关键词
D O I
10.4319/lo.2007.52.4.1293
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Diazotrophic marine cyanobacteria in the genus Trichodesmium contribute a large fraction of the new nitrogen entering the oligotrophic oceans, but little is known about how they respond to shifts in global change variables such as carbon dioxide (CO2) and temperature. We compared Trichodesmium dinitrogen (N-2) and CO2 fixation rates during steady-state growth under past, current, and future CO2 scenarios, and at two relevant temperatures. At projected CO2 levels of year 2100 (76 Pa, 750 ppm), N-2 fixation rates of Pacific and Atlantic isolates increased 35-100%, and CO2 fixation rates increased 15-128% relative to present day CO2 conditions (39 Pa, 380 ppm). CO2- mediated rate increases were of similar relative magnitude in both phosphorus (P)-replete and P-limited cultures, suggesting that this effect may be independent of resource limitation. Neither isolate could grow at 15 Pa (150 ppm) CO2, but N-2 and CO2 fixation rates, growth rates, and nitrogen : phosophorus (N : P) ratios all increased significantly between 39 Pa and 152 Pa (1500 ppm). In contrast, these parameters were affected only minimally or not at all by a 4 degrees C temperature change. Photosynthesis versus irradiance parameters, however, responded to both CO2 and temperature but in different ways for each isolate. These results suggest that by the end of this century, elevated CO2 could substantially increase global Trichodesmium N-2 and CO2 fixation, fundamentally altering the current marine N and C cycles and potentially driving some oceanic regimes towards P limitation. CO2 limitation of Trichodesmium diazotrophy during past glacial periods could also have contributed to setting minimum atmospheric CO2 levels through downregulation of the biological pump. The relationship between marine N-2 fixation and atmospheric CO2 concentration appears to be more complex than previously realized and needs to be considered in the context of the rapidly changing oligotrophic oceans.
引用
收藏
页码:1293 / 1304
页数:12
相关论文
共 41 条
[1]  
[Anonymous], 2001, Oceanography, DOI [10.5670/oceanog.2001.08, DOI 10.5670/OCEANOG.2001.08]
[2]  
[Anonymous], BIOGEOSCI DISC
[3]   Marine microorganisms and global nutrient cycles [J].
Arrigo, KR .
NATURE, 2005, 437 (7057) :349-355
[4]   The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism [J].
Badger, MR ;
Price, GD ;
Long, BM ;
Woodger, FJ .
JOURNAL OF EXPERIMENTAL BOTANY, 2006, 57 (02) :249-265
[5]   Interannual variability of oceanic CO2 and biogeochemical properties in the Western North Atlantic subtropical gyre [J].
Bates, NR .
DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 2001, 48 (8-9) :1507-1528
[6]   Biodiversity of marine plants in an era of climate change: Some predictions based on physiological performance [J].
Beardall, J ;
Beer, S ;
Raven, JA .
BOTANICA MARINA, 1998, 41 (01) :113-123
[7]   Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium [J].
Berman-Frank, I ;
Lundgren, P ;
Chen, YB ;
Küpper, H ;
Kolber, Z ;
Bergman, B ;
Falkowski, P .
SCIENCE, 2001, 294 (5546) :1534-1537
[8]   Modelling regional responses by marine pelagic ecosystems to global climate change [J].
Boyd, PW ;
Doney, SC .
GEOPHYSICAL RESEARCH LETTERS, 2002, 29 (16) :53-1
[9]   Nitrogen fixation by Trichodesmium spp.:: An important source of new nitrogen to the tropical and subtropical North Atlantic Ocean -: art. no. GB2024 [J].
Capone, DG ;
Burns, JA ;
Montoya, JP ;
Subramaniam, A ;
Mahaffey, C ;
Gunderson, T ;
Michaels, AF ;
Carpenter, EJ .
GLOBAL BIOGEOCHEMICAL CYCLES, 2005, 19 (02) :1-17
[10]   Extensive bloom of a N2-fixing diatom/cyanobacterial association in the tropical Atlantic Ocean [J].
Carpenter, EJ ;
Montoya, JP ;
Burns, J ;
Mulholland, MR ;
Subramaniam, A ;
Capone, DG .
MARINE ECOLOGY PROGRESS SERIES, 1999, 185 :273-283