High rate electrochemical performances of nanosized ZnO and carbon co-coated LiFePO4 cathode

被引:91
作者
Cui, Yan [1 ]
Zhao, Xiaoli [1 ]
Guo, Ruisong [1 ]
机构
[1] Tianjin Univ, Minist Educ, Key Lab Adv Ceram & Machining Technol, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Inorganic compounds; Nanostructures; Impedance spectroscopy; Electrochemical properties; COMPOSITE CATHODE; PHOSPHO-OLIVINES; LITHIUM;
D O I
10.1016/j.materresbull.2010.03.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The high rate electrochemical performances of ZnO and carbon co-coated LiFePO4 have been studied by X-ray diffraction, high-resolution transmission electron microscope, electrochemical impedance spectroscopy, cyclic voltammetry and galvanostatic measurements. The carbon coated LiFePO4 material was prepared by a freeze-drying method, and the diffusion coefficient and exchange current of these materials were calculated from their electrochemical impedance spectroscopy. The electrode delivered a reversible capacity of about 90% of the theoretical capacity when cycled between 2.5 and 4.2 V and showed stable cycle performance at high charge/discharge rates. This study showed that the co-coating process and freeze-drying method can effectively improve the electrochemical performances of LiFePO4 materials. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:844 / 849
页数:6
相关论文
共 17 条
[1]   Effects of TiO2 coating on high-temperature cycle performance of LiFePO4-based lithium-ion batteries [J].
Chang, Hao-Hsun ;
Chang, Chun-Chih ;
Su, Ching-Yi ;
Wu, Hung-Chun ;
Yang, Mo-Hua ;
Wu, Nae-Lih .
JOURNAL OF POWER SOURCES, 2008, 185 (01) :466-472
[2]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[3]   Effect of surface carbon structure on the electrochemical performance of LiFePO4 [J].
Doeff, MM ;
Hu, YQ ;
McLarnon, F ;
Kostecki, R .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (10) :A207-A209
[4]   A highly soluble dimethoxybenzene derivative as a redox shuttle for overcharge protection of secondary lithium batteries [J].
Feng, J. K. ;
Ai, X. P. ;
Cao, Y. L. ;
Yang, H. X. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (01) :25-30
[5]   Enhanced electrochemical performance and thermal stability of La2O3-coated LiCoO2 [J].
Fey, George Ting-Kuo ;
Muralidharan, P. ;
Lu, Cheng-Zhang ;
Cho, Yung-Da .
ELECTROCHIMICA ACTA, 2006, 51 (23) :4850-4858
[6]   Electrochemical properties of LiFePO4-multiwalled carbon nanotubes composite cathode materials for lithium polymer battery [J].
Jin, Bo ;
Jin, En Mei ;
Park, Kyung-Hee ;
Gu, Hal-Bon .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (10) :1537-1540
[7]   High capacity surface-modified LiCoO2 cathodes for lithium-ion batteries [J].
Kannan, AM ;
Rabenberg, L ;
Manthiram, A .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (01) :A16-A18
[8]   Electrochemical performance of LiFePO4 cathode material coated with ZrO2 nanolayer [J].
Liu, H. ;
Wang, G. X. ;
Wexler, D. ;
Wang, J. Z. ;
Liu, H. K. .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (01) :165-169
[9]   Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries [J].
Liu, H. ;
Cao, Q. ;
Fu, L. J. ;
Li, C. ;
Wu, Y. P. ;
Wu, H. Q. .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (10) :1553-1557
[10]   Electrochemical study on Mn2+-substitution in LiFePO4 olivine compound [J].
Nakamura, Tatsuya ;
Sakumoto, Kiyotaka ;
Okamoto, Mitsuru ;
Seki, Shiro ;
Kobayashi, Yo ;
Takeuchi, Tomonari ;
Tabuchi, Mitsuharu ;
Yamada, Yoshihiro .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :435-441