Effect of the particle size on the electron injection efficiency in dye-sensitized nanocrystalline TiO2 films studied by time-resolved microwave conductivity (TRMC) measurements

被引:85
作者
Katoh, Ryuzi
Huijser, Annemarie
Hara, Kohjiro
Savenije, Tom J.
Siebbeles, Laurens D. A.
机构
[1] AIST, Tsukuba, Ibaraki 3058565, Japan
[2] Delft Univ Technol, Optoelect Mat Sect, DelftChemTech, Fac Sci Appl, NL-2628 BL Delft, Netherlands
关键词
D O I
10.1021/jp072585q
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The efficiency of electron injection from photoexcited dye molecules into TiO2 nanoparticles with two different sizes (20 or 300 nm) was studied using the time-resolved microwave conductivity (TRMC) technique. For the ruthenium dye (N719) adsorbed on 20 nm TiO2 particles, we have found a near 100% injection efficiency, which is consistent with previous transient optical absorption studies. In contrast, the electron injection efficiency for N719 sensitized on 300 nm TiO2 particles was found to be less than 50%. A similar behavior was found for coumarine-sensitized TiO2 nanoparticle films. The difference is tentatively attributed to differences in the adsorption of dye molecules on the TiO2 surface. Interestingly, only for 20 nm TiO2 particles, a trap filling effect has been observed, that is, at low illumination intensities, the TRMC signal increases more than proportional with the illumination intensity. This is attributed to an increase in electron mobility due to occupation of deep traps. The absence of a significant trap filling effect for 300 nm particles points toward a considerably lower trap density.
引用
收藏
页码:10741 / 10746
页数:6
相关论文
共 54 条
[1]   Parameters affecting electron injection dynamics from ruthenium dyes to titanium dioxide nanocrystalline thin film [J].
Asbury, JB ;
Anderson, NA ;
Hao, EC ;
Ai, X ;
Lian, TQ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (30) :7376-7386
[2]   Ultrafast electron transfer dynamics from molecular adsorbates to semiconductor nanocrystalline thin films [J].
Asbury, JB ;
Hao, E ;
Wang, YQ ;
Ghosh, HN ;
Lian, TQ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (20) :4545-4557
[3]  
Barbe CJ, 1997, J AM CERAM SOC, V80, P3157, DOI 10.1111/j.1151-2916.1997.tb03245.x
[4]   Electron injection and recombination in Ru(dcbpy)2(NCS)2 sensitized nanostructured ZnO [J].
Bauer, C ;
Boschloo, G ;
Mukhtar, E ;
Hagfeldt, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (24) :5585-5588
[5]   Photoinduced ultrafast dye-to-semiconductor electron injection from nonthermalized and thermalized donor states [J].
Benkö, G ;
Kallioinen, J ;
Korppi-Tommola, JEI ;
Yartsev, AP ;
Sundström, V .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (03) :489-493
[6]   Thin film actinometers for transient absorption spectroscopy: Applications to dye-sensitized solar cells [J].
Bergeron, BV ;
Kelly, CA ;
Meyer, GJ .
LANGMUIR, 2003, 19 (20) :8389-8394
[7]   Grain morphology and trapping effects on electron transport in dye-sensitized nanocrystalline solar cells [J].
Cass, MJ ;
Walker, AB ;
Martinez, D ;
Peter, LM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (11) :5100-5107
[8]   Structural influence on charge-carrier lifetimes in TiO2 powders studied by microwave absorption [J].
Colbeau-Justin, C ;
Kunst, M ;
Huguenin, D .
JOURNAL OF MATERIALS SCIENCE, 2003, 38 (11) :2429-2437
[9]   Photochemical energy conversion: from molecular dyads to solar cells [J].
Durrant, James R. ;
Haque, Saif A. ;
Palomares, Emilio .
CHEMICAL COMMUNICATIONS, 2006, (31) :3279-3289
[10]   RATE CONSTANTS FOR CHARGE INJECTION FROM EXCITED SENSITIZER INTO SNO2, ZNO, AND TIO2 SEMICONDUCTOR NANOCRYSTALLITES [J].
FESSENDEN, RW ;
KAMAT, PV .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (34) :12902-12906