Prior exercise increases phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle

被引:94
作者
Arias, Edward B. [1 ]
Kim, Junghoon [1 ]
Funai, Katsuhiko [1 ]
Cartee, Gregory D. [1 ]
机构
[1] Univ Michigan, Div Kinesiol, Muscle Biol Lab, Ann Arbor, MI 48109 USA
来源
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM | 2007年 / 292卷 / 04期
关键词
glucose transport; protein kinase B; insulin signaling; adenosine monophosphate-activated protein kinase;
D O I
10.1152/ajpendo.00602.2006
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Prior exercise increases phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle. Am J Physiol Endocrinol Metab 292: E1191-E1200, 2007. First published December 19, 2006; doi:10.1152/ajpendo.00602.2006. - The main purpose of this study was to determine whether the increased glucose transport (GT) found immediately postexercise (IPEX) or 4 h postexercise (4hPEX) is accompanied by increased phosphorylation of Akt substrate of 160 kDa (AS160, a protein regulator of GLUT4 translocation). Paired epitrochlearis muscles were dissected from rats (sedentary or IPEX, 2-h swim) and used to measure protein phosphorylation and insulin-independent GT. IPEX values exceeded sedentary values for GT and phosphorylations of AS160, AMP-activated protein kinase (pAMPK) and acetyl-CoA carboxylase (pACC) but not for AS160 abundance or phosphorylation of Akt serine (pSerAkt), Akt threonine (pThrAkt), or glycogen synthase kinase-3 (pGSK3). AS160 phosphorylation was significantly correlated with GT (R = 0.801, P < 0.01) and pAMPK (R = 0.655, P < 0.05). Muscles from other rats were studied 4hPEX along with sedentary controls. One muscle per rat was incubated without insulin, and the contralateral muscle was incubated with insulin. 4hPEX values exceeded sedentary values for insulin-stimulated GT. The elevated pAMPK and pACC found IPEX had reversed by 4hPEX. Insulin caused a significant increase in pSerAkt, pThrAkt, pGSK3, and AS160 phosphorylation with or without exercise. Exercise significantly increased AS160 phosphorylation, regardless of insulin, with unchanged AS160 abundance. Among the signaling proteins studied, insulin-stimulated GT was significantly correlated only with insulin-stimulated pThrAkt (R = 0.720, P < 0.0005). The results are consistent with a role for increased AS160 phosphorylation in the increased insulin-independent GT IPEX, and the exercise effects on AS160 phosphorylation and/or pThrAkt at 4hPEX are potentially relevant to the increased insulin-stimulated glucose transport at this time.
引用
收藏
页码:E1191 / E1200
页数:10
相关论文
共 48 条
[1]   The role of PI 3-kinase in insulin action [J].
Alessi, DR ;
Downes, CP .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 1998, 1436 (1-2) :151-164
[2]   Mechanism of activation of protein kinase B by insulin and IGF-1 [J].
Alessi, DR ;
Andjelkovic, M ;
Caudwell, B ;
Cron, P ;
Morrice, N ;
Cohen, P ;
Hemmings, BA .
EMBO JOURNAL, 1996, 15 (23) :6541-6551
[3]   Prolonged incubation in PUGNAc results in increased protein O-linked glycosylation and insulin resistance in rat skeletal muscle [J].
Arias, EB ;
Kim, J ;
Cartee, GD .
DIABETES, 2004, 53 (04) :921-930
[4]   DISSOCIATION BETWEEN INSULIN BINDING AND GLUCOSE-UTILIZATION AFTER INTENSE EXERCISE IN MOUSE SKELETAL-MUSCLES [J].
BONEN, A ;
TAN, MH .
HORMONE AND METABOLIC RESEARCH, 1989, 21 (04) :172-178
[5]   Insulin, but not contraction, activates Akt/PKB in isolated rat skeletal muscle [J].
Brozinick, JT ;
Birnbaum, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (24) :14679-14682
[6]   Increased phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile activity [J].
Bruss, MD ;
Arias, EB ;
Lienhard, GE ;
Cartee, GD .
DIABETES, 2005, 54 (01) :41-50
[7]   EXERCISE INCREASES SUSCEPTIBILITY OF MUSCLE GLUCOSE-TRANSPORT TO ACTIVATION BY VARIOUS STIMULI [J].
CARTEE, GD ;
HOLLOSZY, JO .
AMERICAN JOURNAL OF PHYSIOLOGY, 1990, 258 (02) :E390-E393
[8]   PROLONGED INCREASE IN INSULIN-STIMULATED GLUCOSE-TRANSPORT IN MUSCLE AFTER EXERCISE [J].
CARTEE, GD ;
YOUNG, DA ;
SLEEPER, MD ;
ZIERATH, J ;
WALLBERGHENRIKSSON, H ;
HOLLOSZY, JO .
AMERICAN JOURNAL OF PHYSIOLOGY, 1989, 256 (04) :E494-E499
[9]   GROWTH-HORMONE REDUCES GLUCOSE-TRANSPORT BUT NOT GLUT-1 OR GLUT-4 IN ADULT AND OLD RATS [J].
CARTEE, GD ;
BOHN, EE .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 1995, 268 (05) :E902-E909
[10]   PERSISTENT EFFECTS OF EXERCISE ON SKELETAL-MUSCLE GLUCOSE-TRANSPORT ACROSS THE LIFE-SPAN OF RATS [J].
CARTEE, GD ;
BRIGGSTUNG, C ;
KIETZKE, EW .
JOURNAL OF APPLIED PHYSIOLOGY, 1993, 75 (02) :972-978