A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils

被引:86
作者
Benner, P
Mehrmann, V
Xu, HG
机构
[1] Univ Bremen, Zentrum Technomath, Fb Math & Informat 3, D-28334 Bremen, Germany
[2] TU Chemnitz, Fak Math, D-09107 Chemnitz, Germany
[3] Fudan Univ, Dept Math, Shanghai 200433, Peoples R China
关键词
D O I
10.1007/s002110050315
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new method is presented for the numerical computation of the generalized eigenvalues of real Hamiltonian or symplectic pencils and matrices. The method is numerically backward stable and preserves the structure (i.e., Hamiltonian or symplectic). In the case of a Hamiltonian matrix the method is closely related to the square reduced method of Van Loan, but in contrast to that method which may suffer from a loss of accuracy of order root epsilon, where epsilon is the machine precision, the new method computes the eigenvalues to full possible accuracy.
引用
收藏
页码:329 / 358
页数:30
相关论文
共 29 条
[1]   ON HAMILTONIAN AND SYMPLECTIC HESSENBERG FORMS [J].
AMMAR, G ;
MEHRMANN, V .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 149 :55-72
[2]  
Ammar G., 1993, ELECTRON T NUMER ANA, V1, P33
[3]  
Anderson E, 1994, LAPACK USERS GUIDE
[4]  
[Anonymous], COMMUNICATION
[5]  
BENNER P, 1995, 9522 SPC TU CHEM ZWI
[6]  
BENNER P, 1996, SFB3939606 TU CHEMN
[7]  
BOJANCZYK A, 1992, P SOC PHOTO-OPT INS, V1770, P31, DOI 10.1117/12.130915
[8]  
Bunse-Gerstner A., 1989, P WORKSH RICC EQ CON, P107
[9]   MATRIX FACTORIZATIONS FOR SYMPLECTIC QR-LIKE METHODS [J].
BUNSEGERSTNER, A .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1986, 83 :49-77
[10]  
Golub G.H., 1996, Matrix Computations, Vthird