Simple theoretical model of shear viscosity in isotopic fluid mixtures

被引:5
作者
Ali, Sk. Musharaf [1 ]
机构
[1] Bhabha Atom Res Ctr, Div Chem Engn, Bombay 400085, Maharashtra, India
关键词
shear viscosity; isotopic mixture; Stokes-Einstein relation; Roults law; molecular dynamics simulation;
D O I
10.1080/00268970601177984
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose a simple hybrid model for the shear viscosity of isotopic fluid mixtures by coupling the contribution of the Stokes - Einstein relation with the existing linear model of Roults's law for the shear viscosity. The calculated values of shear viscosity using this simple hybrid model are found to be in excellent agreement with the molecular dynamics ( MD) simulation results. The calculated value of the shear viscosity obtained from the theoretical model as well as the MD simulation increases with increasing mass ratio.
引用
收藏
页码:387 / 393
页数:7
相关论文
共 35 条
[1]   Mass dependence of shear viscosity in a binary fluid mixture: Mode-coupling theory [J].
Ali, Sk. Musharaf ;
Samanta, Alok ;
Choudhury, Niharendu ;
Ghosh, Swapan K. .
PHYSICAL REVIEW E, 2006, 74 (05)
[2]   Theory of cross-diffusivity in a binary fluid mixture [J].
Ali, SM ;
Samanta, A ;
Ghosh, SK .
CHEMICAL PHYSICS, 2002, 276 (03) :301-308
[3]   Mode coupling theory of self and cross diffusivity in a binary fluid mixture: Application to Lennard-Jones systems [J].
Ali, SM ;
Samanta, A ;
Ghosh, SK .
JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (23) :10419-10429
[4]  
Allen M. P., 2017, Computer Simulation of Liquids, DOI [10.1093/oso/9780198803195.001.0001, DOI 10.1093/OSO/9780198803195.001.0001]
[5]  
[Anonymous], FLUID MECH
[6]   MASS DEPENDENCE OF THE SELF-DIFFUSION COEFFICIENTS IN 2 EQUIMOLAR BINARY-LIQUID LENNARD-JONES SYSTEMS DETERMINED THROUGH MOLECULAR-DYNAMICS SIMULATION [J].
BEARMAN, RJ ;
JOLLY, DL .
MOLECULAR PHYSICS, 1981, 44 (03) :665-675
[8]  
Bird R.B., 1960, Transport Phenomena, DOI 10.1002/aic.690070245
[9]  
Castellan GW, 1971, Physical chemistry, V2nd
[10]  
Cussler EL, 1998, Diffusion mass transfer in fluid systems