Sequence determinants in human polyadenylation site selection

被引:107
作者
Legendre, M [1 ]
Gautheret, D [1 ]
机构
[1] INSERM ERM 206, F-13288 Marseille 09, France
关键词
D O I
10.1186/1471-2164-4-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Differential polyadenylation is a widespread mechanism in higher eukaryotes producing mRNAs with different 3' ends in different contexts. This involves several alternative polyadenylation sites in the 3' UTR, each with its specific strength. Here, we analyze the vicinity of human polyadenylation signals in search of patterns that would help discriminate strong and weak polyadenylation sites, or true sites from randomly occurring signals. Results: We used human genomic sequences to retrieve the region downstream of polyadenylation signals, usually absent from cDNA or mRNA databases. Analyzing 4956 EST-validated polyadenylation sites and their -300/+300 nt flanking regions, we clearly visualized the upstream (USE) and downstream (DSE) sequence elements, both characterized by U-rich (not GU-rich) segments. The presence of a USE and a DSE is the main feature distinguishing true polyadenylation sites from randomly occurring A(A/U)UAAA hexamers. While USEs are indifferently associated with strong and weak poly(A) sites, DSEs are more conspicuous near strong poly(A) sites. We then used the region encompassing the hexamer and DSE as a training set for poly(A) site identification by the ERPIN program and achieved a prediction specificity of 69 to 85% for a sensitivity of 56%. Conclusion: The availability of complete genomes and large EST sequence databases now permit large-scale observation of polyadenylation sites. Both U-rich sequences flanking both sides of poly(A) signals contribute to the definition of "true" sites. However, the downstream U-rich sequences may also play an enhancing role. Based on this information, poly(A) site prediction accuracy was moderately but consistently improved compared to the best previously available algorithm.
引用
收藏
页数:9
相关论文
共 17 条
[1]   The cleavage/polyadenylation activity triggered by a U-rich motif sequence is differently required depending on the poly(A) site location at either the first or last 3′-terminal exon of the 2′-5′ oligo(A) synthetase gene [J].
Aissouni, Y ;
Perez, C ;
Calmels, B ;
Benech, PD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (39) :35808-35814
[2]   Patterns of variant polyadenylation signal usage in human genes [J].
Beaudoing, E ;
Freier, S ;
Wyatt, JR ;
Claverie, JM ;
Gautheret, D .
GENOME RESEARCH, 2000, 10 (07) :1001-1010
[3]   Identification of alternate polyadenylation sites and analysis of their tissue distribution using EST data [J].
Beaudoing, E ;
Gautheret, D .
GENOME RESEARCH, 2001, 11 (09) :1520-1526
[4]   Recruitment of a basal polyadenylation factor by the upstream sequence element of the human lamin B2 polyadenylation signal [J].
Brackenridge, S ;
Proudfoot, NJ .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (08) :2660-2669
[5]   Prediction of complete gene structures in human genomic DNA [J].
Burge, C ;
Karlin, S .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 268 (01) :78-94
[6]   CLEAVAGE SITE DETERMINANTS IN THE MAMMALIAN POLYADENYLATION SIGNAL [J].
CHEN, F ;
MACDONALD, CC ;
WILUSZ, J .
NUCLEIC ACIDS RESEARCH, 1995, 23 (14) :2614-2620
[7]   SEQUENCE AND POSITION REQUIREMENTS FOR URIDYLATE-RICH DOWNSTREAM ELEMENTS OF POLYADENYLATION SIGNALS [J].
CHOU, ZF ;
CHEN, F ;
WILUSZ, J .
NUCLEIC ACIDS RESEARCH, 1994, 22 (13) :2525-2531
[8]   Mechanism and regulation of mRNA polyadenylation [J].
Colgan, DF ;
Manley, JL .
GENES & DEVELOPMENT, 1997, 11 (21) :2755-2766
[9]   Computational identification of promoters and first exons in the human genome [J].
Davuluri, RV ;
Grosse, I ;
Zhang, MQ .
NATURE GENETICS, 2001, 29 (04) :412-417
[10]   Alternative poly(A) site selection in complex transcription units: Means to an end? [J].
EdwaldsGilbert, G ;
Veraldi, KL ;
Milcarek, C .
NUCLEIC ACIDS RESEARCH, 1997, 25 (13) :2547-2561