Diameter distribution of single wall carbon nanotubes in nanobundles

被引:118
作者
Rols, S [1 ]
Righi, A
Alvarez, L
Anglaret, E
Almairac, R
Journet, C
Bernier, P
Sauvajol, JL
Benito, AM
Maser, WK
Muñoz, E
Martinez, MT
de la Fuente, GF
Girard, A
Ameline, JC
机构
[1] Univ Montpellier 2, Dynam Phases Condensees Grp, F-34095 Montpellier 5, France
[2] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France
[3] CSIC, Inst Carboquim, Zaragoza 50015, Spain
[4] Grp Mat Condensee Mat, F-35042 Rennes, France
[5] Inst Ciencia Mat Aragon, Zaragoza 50015, Spain
关键词
D O I
10.1007/s100510070049
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The frequency of the Raman active Ale radial breathing mode has been widely used as a tool to estimate the distribution of diameters of single wail carbon nanotubes (SWNT). However, the relation between frequency and diameter is not straightforward and results are model-dependent. Because most of the experiments are performed on bundles and not on isolated tubes, the model should especially take into account the van der Waals inter tube interactions. Here. we use a pair-potential approach to account for such interactions and we derive a nonlinear relation between the SWNT diameter and the frequency of the A(1g) radial breathing modes. We demonstrate a good agreement between calculations and the diameters derived from diffraction experiments on the same samples.
引用
收藏
页码:201 / 205
页数:5
相关论文
共 25 条
[1]   Resonant Raman study of the structure and electronic properties of single-wall carbon nanotubes [J].
Alvarez, L ;
Righi, A ;
Guillard, T ;
Rols, S ;
Anglaret, E ;
Laplaze, D ;
Sauvajol, JL .
CHEMICAL PHYSICS LETTERS, 2000, 316 (3-4) :186-190
[2]   Solar production of single-wall carbon nanotubes: growth mechanisms studied by electron microscopy and Raman spectroscopy [J].
Alvarez, L ;
Guillard, T ;
Sauvajol, JL ;
Flamant, G ;
Laplaze, D .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2000, 70 (02) :169-173
[3]   Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes [J].
Anglaret, E ;
Rols, S ;
Sauvajol, JL .
PHYSICAL REVIEW LETTERS, 1998, 81 (21) :4780-4780
[4]   Raman characterization of single wall carbon nanotubes prepared by the solar energy route [J].
Anglaret, E ;
Bendiab, N ;
Guillard, T ;
Journet, C ;
Flamant, G ;
Laplaze, D ;
Bernier, P ;
Sauvajol, JL .
CARBON, 1998, 36 (12) :1815-1820
[5]   Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes [J].
Bandow, S ;
Asaka, S ;
Saito, Y ;
Rao, AM ;
Grigorian, L ;
Richter, E ;
Eklund, PC .
PHYSICAL REVIEW LETTERS, 1998, 80 (17) :3779-3782
[6]   Raman studies on single walled carbon nanotubes produced by the electric arc technique [J].
de la Chapelle, ML ;
Lefrant, S ;
Journet, C ;
Maser, W ;
Bernier, P ;
Loiseau, A .
CARBON, 1998, 36 (5-6) :705-708
[7]   van der Waals interaction in nanotube bundles:: Consequences on vibrational modes [J].
Henrard, L ;
Hernández, E ;
Bernier, P ;
Rubio, A .
PHYSICAL REVIEW B, 1999, 60 (12) :R8521-R8524
[8]   Large-scale production of single-walled carbon nanotubes by the electric-arc technique [J].
Journet, C ;
Maser, WK ;
Bernier, P ;
Loiseau, A ;
delaChapelle, ML ;
Lefrant, S ;
Deniard, P ;
Lee, R ;
Fischer, JE .
NATURE, 1997, 388 (6644) :756-758
[9]   Vibrational modes of carbon nanotubes and nanoropes [J].
Kahn, D ;
Lu, JP .
PHYSICAL REVIEW B, 1999, 60 (09) :6535-6540
[10]   Resonant Raman scattering and the zone-folded electronic structure in single-wall nanotubes [J].
Kasuya, A ;
Sugano, M ;
Maeda, T ;
Saito, Y ;
Tohji, K ;
Takahashi, H ;
Sasaki, Y ;
Fukushima, M ;
Nishina, Y ;
Horie, C .
PHYSICAL REVIEW B, 1998, 57 (09) :4999-5001