Systematic perturbation calculation of integrals with applications to physics -: art. no. 016704

被引:13
作者
Amore, P
Aranda, A
Sáenz, R
Fernández, FM
机构
[1] Univ Colima, Fac Ciencias, Colima, Mexico
[2] Natl Univ La Plata, CONICET, INIFTA, RA-1900 La Plata, Argentina
来源
PHYSICAL REVIEW E | 2005年 / 71卷 / 01期
关键词
Classical oscillators - Divergent series - Elementary functions - Systematic perturbations;
D O I
10.1103/PhysRevE.71.016704
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper we generalize and improve a method for calculating the period of a classical oscillator and other integrals of physical interest, which was recently developed by some of the authors. We derive analytical expressions that prove to be more accurate than those commonly found in the literature, and test the convergence of the series produced by the approach.
引用
收藏
页数:7
相关论文
共 12 条
[1]   High order analysis of nonlinear periodic differential equations [J].
Amore, P ;
Lamas, HM .
PHYSICS LETTERS A, 2004, 327 (2-3) :158-166
[2]   Presenting a new method for the solution of nonlinear problems [J].
Amore, P ;
Aranda, A .
PHYSICS LETTERS A, 2003, 316 (3-4) :218-225
[3]  
AMORE P, MATHPH0405030
[4]  
AMORE P, IN PRESS J SOUND VIB
[5]  
[Anonymous], 1990, LARGE ORDER PERTURBA
[6]  
Kleinert H., 2004, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, DOI DOI 10.1142/7305
[7]  
Kleinert H., 2001, CRITICAL PROPERTIES
[8]  
Nayfeh A. H., 1981, Introduction to Perturbation Techniques
[9]   High-order variational calculation for the frequency of time-periodic solutions [J].
Pelster, A ;
Kleinert, H ;
Schanz, M .
PHYSICAL REVIEW E, 2003, 67 (01) :6
[10]  
SPIEGEL RM, 1967, THEORY PROBLEMS THEO