Generalized Bregman projections in convex feasibility problems

被引:9
作者
Kiwiel, KC [1 ]
机构
[1] Polish Acad Sci, Syst Res Inst, PL-01447 Warsaw, Poland
关键词
convex feasibility problems; successive projections; Bregman functions; B-functions; subgradient algorithms; nondifferentiable optimization;
D O I
10.1023/A:1022619318462
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present a method for finding common points of finitely many closed convex sets in Euclidean space. The Bregman extension of the classical method of cyclic orthogonal projections employs nonorthogonal projections induced by a convex Bregman function, whereas the Bauschke and Borvein method uses Bregman/Legendre functions. Our method works with generalized Bregman functions (B-functions) and inexact projections, which are easier to compute than the exact ones employed in other methods. We also discuss subgradient algorithms with Bregman projections.
引用
收藏
页码:139 / 157
页数:19
相关论文
共 22 条
[1]  
ALBER YI, 1994, CONVERGENCE BREGMAN
[2]  
[Anonymous], 1987, TRANSLATIONS SERIES
[3]  
Bauschke H. H., 1997, J CONVEX ANAL, V4, P27
[4]   Projection algorithms for solving convex feasibility problems [J].
Bauschke, HH ;
Borwein, JM .
SIAM REVIEW, 1996, 38 (03) :367-426
[5]  
Bregman L. M., 1965, SOV MATH DOKL, V6, P688
[6]  
Censor Y., 1996, Optimization, V37, P323, DOI 10.1080/02331939608844225
[7]   AN ITERATIVE ROW-ACTION METHOD FOR INTERVAL CONVEX-PROGRAMMING [J].
CENSOR, Y ;
LENT, A .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1981, 34 (03) :321-353
[8]  
Censor Y., 1994, Numer. Algorithms, V8, P221, DOI DOI 10.1007/BF02142692
[9]  
CENSOR Y, 1994, INTERIOR POINT METHO
[10]   CONVERGENCE ANALYSIS OF A PROXIMAL-LIKE MINIMIZATION ALGORITHM USING BREGMAN FUNCTIONS [J].
Chen, Gong ;
Teboulle, Marc .
SIAM JOURNAL ON OPTIMIZATION, 1993, 3 (03) :538-543