Regulation of the cellulosomal celS (cel48A) gene of Clostridium thermocellum is growth rate dependent

被引:63
作者
Dror, TW
Morag, E
Rolider, A
Bayer, EA
Lamed, R
Shoham, Y [1 ]
机构
[1] Technion Israel Inst Technol, Dept Food Engn & Biotechnol, IL-32000 Haifa, Israel
[2] Technion Israel Inst Technol, Inst Catalysis Sci & Technol, IL-32000 Haifa, Israel
[3] Weizmann Inst Sci, Dept Biol Chem, IL-76100 Rehovot, Israel
[4] Tel Aviv Univ, Dept Mol Microbiol & Biotechnol, Ramat Aviv, Israel
关键词
D O I
10.1128/JB.185.10.3042-3048.2003
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Clostridium thermocellum produces an extracellular multienzyme complex, termed cellulosome, that allows efficient solubilization of crystalline cellulose. One of the major enzymes in this complex is the CelS (Ce148A) exoglucanase. The regulation of CelS at the protein and transcriptional levels was studied using batch and continuous cultures. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analyses indicated that the amount of CelS in the supernatant fluids of cellobiose-grown cultures is lower than that of cellulose-grown cultures. The transcriptional level of celS mRNA was determined quantitatively by RNase protection assays with batch and continuous cultures under carbon and nitrogen limitation. The amount of celS mRNA transcripts per cell was about 180 for cells grown under carbon limitation at growth rates of 0.04 to 0.21 h(-1) and 80 and 30 transcripts per cell for batch cultures at growth rates of 0.23 and 0.35 h(-1), respectively. Under nitrogen limitation, the corresponding levels were 110, 40, and 30 transcripts/cell for growth rates of 0.07, 0.11, and 0.14 h(-1), respectively. Two major transcriptional start sites were detected at positions - 140 and - 145 bp, upstream of the translational start site of the celS gene. The potential promoters exhibited homology to known sigma factors (i.e., sigma(A) and sigma(B)) of Bacillus subtilis. The relative activity of the two promoters remained constant under the conditions studied and was in agreement with the results of the RNase protection assay, in which the observed transcriptional activity was inversely proportional to the growth rate.
引用
收藏
页码:3042 / 3048
页数:7
相关论文
共 49 条
[1]   CHARACTERIZATION OF THE SUBUNITS IN AN APPARENTLY HOMOGENEOUS SUBPOPULATION OF CLOSTRIDIUM-THERMOCELLUM CELLULOSOMES [J].
ALI, BRS ;
ROMANIEC, MPM ;
HAZLEWOOD, GP ;
FREEDMAN, RB .
ENZYME AND MICROBIAL TECHNOLOGY, 1995, 17 (08) :705-711
[2]   ORGANIZATION AND DISTRIBUTION OF THE CELLULOSOME IN CLOSTRIDIUM-THERMOCELLUM [J].
BAYER, EA ;
SETTER, E ;
LAMED, R .
JOURNAL OF BACTERIOLOGY, 1985, 163 (02) :552-559
[3]   THE CELLULOSOME - A TREASURE-TROVE FOR BIOTECHNOLOGY [J].
BAYER, EA ;
MORAG, E ;
LAMED, R .
TRENDS IN BIOTECHNOLOGY, 1994, 12 (09) :379-386
[4]   ADHERENCE OF CLOSTRIDIUM-THERMOCELLUM TO CELLULOSE [J].
BAYER, EA ;
KENIG, R ;
LAMED, R .
JOURNAL OF BACTERIOLOGY, 1983, 156 (02) :818-827
[5]   Cellulosomes - Structure and ultrastructure [J].
Bayer, EA ;
Shimon, LJW ;
Shoham, Y ;
Lamed, R .
JOURNAL OF STRUCTURAL BIOLOGY, 1998, 124 (2-3) :221-234
[6]   Cellulose, cellulases and cellulosomes [J].
Bayer, EA ;
Chanzy, H ;
Lamed, R ;
Shoham, Y .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1998, 8 (05) :548-557
[7]  
BAYER EA, 2001, PROKARYOTES EVOLVING
[8]   MAPPING OF MESSENGER-RNA ENCODING ENDOGLUCANASE A FROM CLOSTRIDIUM-THERMOCELLUM [J].
BEGUIN, P ;
ROCANCOURT, M ;
CHEBROU, MC ;
AUBERT, JP .
MOLECULAR & GENERAL GENETICS, 1986, 202 (02) :251-254
[9]   The cellulosome: An exocellular, multiprotein complex specialized in cellulose degradation [J].
Beguin, P ;
Lemaire, M .
CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 1996, 31 (03) :201-236
[10]   Effect of D-glucono-1,4-lactone on the production of CMCase, pNPCase and true cellulase by Clostridium thermocellum [J].
Bhat, S ;
Kennedy, JF ;
Goodenough, PW ;
Owen, E ;
Bhat, MK .
CARBOHYDRATE POLYMERS, 1997, 34 (1-2) :95-99