A new algebraic geometry algorithm for integer programming

被引:15
作者
Bertsimas, D [1 ]
Perakis, G
Tayur, S
机构
[1] MIT, Alfred P Sloan Sch Management, Cambridge, MA 02139 USA
[2] Carnegie Mellon Univ, Grad Sch Ind Adm, Pittsburgh, PA 15213 USA
关键词
integer programming; algebraic geometry; Groebner basis;
D O I
10.1287/mnsc.46.7.999.12033
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a new algorithm for solving integer programming (IP) problems that is based on ideas from algebraic geometry. The method provides a natural generalization of the Farkas lemma for IP, leads to a way of performing sensitivity analysis, offers a systematic enumeration of all feasible solutions, and gives structural information of the feasible set of a given IP. We provide several examples that offer insights on the algorithm and its properties.
引用
收藏
页码:999 / 1008
页数:10
相关论文
共 12 条
[1]  
[Anonymous], 1998, USING ALGEBRAIC GEOM, DOI DOI 10.1007/978-1-4757-6911-1
[2]  
Bertsimas D., 1997, Introduction to linear optimization
[3]  
CONTI P, 1991, LECT NOTES COMPUT SC, V539, P130
[4]  
Cox D., 1997, UNDERGRADUATE TEXTS, V2nd edn
[5]  
LOVASZ L, 1982, ANN DISCRETE MATH, V16, P213
[6]  
Nemhauser GL, 1988, INTEGER COMBINATORIA
[7]  
Papadimitriou Christos H., 1981, Combinatorial Optimization: Algorithms and Complexity
[8]  
Pitassi Toniann, 1996, DESCRIPTIVE COMPLEXI, P215
[9]   AN ALGEBRAIC-GEOMETRY ALGORITHM FOR SCHEDULING IN PRESENCE OF SETUPS AND CORRELATED DEMANDS [J].
TAYUR, SR ;
THOMAS, RR ;
NATRAJ, NR .
MATHEMATICAL PROGRAMMING, 1995, 69 (03) :369-401
[10]   A geometric Buchberger algorithm for integer programming [J].
Thomas, RR .
MATHEMATICS OF OPERATIONS RESEARCH, 1995, 20 (04) :864-884